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SUMMARY

The development of contemporary machine learning (ML) models is driven, in part,

by the availability and volume of labeled training data. Labels provided by humans play a

central role in this training pipeline, offering models ground truth annotations from which

to extract patterns. However, collecting such feedback from humans is a challenging and

time-consuming task. As a result, practitioners must be intentional both in how they choose

to query humans for feedback and in the problem settings for which they request feedback.

This thesis explores learning from human feedback along two fundamental directions.

The first part of the thesis focuses on how we can more effectively learn from and collect

human feedback from a mathematically grounded perspective. In Chapter 2, we consider

the paired comparison, a simple mechanism for collecting human feedback, and show that

paired comparison responses are capable of estimating a much richer parametrization of user

preferences than previously established [1]. In Chapter 3, we propose a new mechanism for

collecting human feedback called the perceptual adjustment query [2] designed to balance

informativeness and cognitive burden. We apply perceptual adjustment queries to a human

perception model parametrized by a low-rank metric and rigorously prove estimation error

bounds.

The second part focuses on how we can leverage pretrained models to avoid collecting

additional human feedback. In Chapter 4, we consider the cold-start phase of a recommender

system, where no user relevance feedback is available to train a retrieval model. Using the

generative abilities of large language models, we design a retrieval framework capable of

retrieving relevant text for users without any human relevance feedback [3]. In Chapter 5, we

improve synthetic image dataset generation by removing the need for humans-in-the-loop

[4]. Existing methods require human annotators to repeatedly label synthetically generated

images; our proposed framework leverages tools from image editting to re-use existing

labeled images, bypassing the need for human annotators.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Past industrial revolutions, from rapid mechanization in the 1760s to the birth of the

modern digital age in the 1960s, share a common theme: the continued advancement in

the partnership between humans and machines. The advent of the machine learning (ML)

boom marks the first development of intelligent machine partners. These machine partners,

however, must often be trained with large amounts of training data, a subset of which is

presented to humans for feedback, such as labels or preferences statements.

Recent empirical breakthroughs ML have resulted largely from increasing model capacity

and training data size. While it would be infeasible to hand annotate the petabytes of data

needed to train models with billions of parameters, human feedback still plays a key role

in adapting trained models for specific tasks and enhancing the quality of outputs. This

is perhaps best highlighted in the development process of large language models (LLMs),

which are first pretrained on copious amounts of unlabeled text data on a general purpose

task, such as next word prediction. To adapt the pretrained model to a specific task, such as

text sentiment classification or document summarization, supervised finetuning is employed

with human annotated datasets. After supervised finetuning, the model undergoes human

preference finetuning to steer the model towards “better” (factually correct, non-harmful,

creative, etc.) outputs that align with human preferences, often provided in the form of

paired comparisons between model outputs. In these latter two stages, humans play a critical

role in curating model outputs.

These large foundational models are emerging as intelligent machine partners for human

users. As with any partnership, clear two-way communication is essential for the success of

this new paradigm of human-machine collaboration; it is crucial that learning systems be

able to comprehend and learn from human perception and judgement. As such, modern ML
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has relied heavily on human feedback, encompassing everything from labeled images to

relative preference orderings of items to manually summarized documents. However, human

feedback may be difficult or even impossible to collect in large quantities. For example, in

the medical image domain, dedicated medical experts are required to invest long periods of

time identifying diseases on images. Even after the initial time investment, disagreements

among experts results in additional time and monetary investment before a final labeled

dataset can be produced. Therefore, a crucial component in this emerging partnership is

to understand how we can best obtain human feedback. This requires both re-examining

existing mechanisms for feedback and the development of new querying mechanisms.

On the other hand, by training such models to encode and reflect human perception and

judgement hints at opportunities to avoid collecting additional human feedback. Another

crucial component of human-machine partnerships is to explore the role of using intelligent

machines to re-use or avoid collecting human feedback in new application areas. This thesis

explores these two fundamental components:

How can we more effectively learn with human feedback and when can we use foundational

tools to learn without additional feedback

1.1 Background

This exploration of learning from human feedback brings together a variety of disciplines,

ranging from high-dimensional statistics to contemporary generative models. The goal of

this section is to provide the reader with a high-level overview of these fields.

1.1.1 A statistical toolbox: structure in high dimensions.

Contemporary ML problems are defined not only by the volume of data, but also the

high-dimensional nature of such data; modern systems are being asked on to process large

volumes of text (represented by high-dimensional embedding vectors) and high definition

images and video. In order to effectively learn in these settings, conventional wisdom states
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that a massive amount of data is necessary. However, real-world data often contains hidden

low-dimensional structure, which leads to more tractable learning solutions. To improve our

understanding of various forms of human feedback in high-dimensional settings, we turn to

the broad and rich field of high-dimensional statistics (e.g., [5, 6]) for mathematical tools

for our analysis. The section aims to provide a brief overview of the statistical benefits of

assuming low-dimensional structure is hidden in our high-dimensional data.

The goal of learning from human feedback often to recover a potentially large set of

unknown parameters from human responses. For example, Chapter 2 and Chapter 3 consider

parametrized models for human perception and preference and explicitly aim to estimate the

unknown parameters. More broadly, modern recommender systems leverage deep neural

networks to predict user actions, with (potentially implicit) human feedback used to train

such models (i.e., recover/learn unknown model parameters.) The process for finetuning

LLMs can be viewed similarly. To perform estimation of some unknown parameter ✓? from

feature-label pairs (xi, yi), i = 1 . . . , n, we typically solve an optimization program of the

form

✓̂ = argmin
✓

nX

i=1

`(✓;xi, yi) + � r(✓). (1.1)

Above, ` is some loss function that measures how well the parameter ✓ fits the data and

r is a regularizer that enforces structure in our estimated parameter, with regularization

parameter � controlling the degree to which structure is enforced.

As a concrete example, we consider the problem of linear regression, where we receive

n noisy measurements y1, . . . , yn of the form

yi = hxi,✓
?i+ ✏i,

where xi 2 Rd are random “sensing vectors”, ✓? 2 Rd is the parameter we are trying to

recover, and ✏i is random noise. Classical statistical results advise that n & d measurements

are needed to faithfully estimate ✓?. Concretely, this means that when the number of
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measurements n satisfies n & d, the squared estimation error k✓? � ✓̂k22 scales like d/n.

Requiring at least order d measurements is reasonable for small-scale problems, but becomes

overly restrictive as the dimension of the problem grows. If, however, the parameter ✓?

contains low-dimensional structure, then there is hope that the number of measurements

(and error) scales with the ambient dimension of the problem.

One common example of structure in linear regression is sparsity, that is, only s entries

of ✓? are non-zero, with s ⌧ d. In this setting, we should expect that the number of

measurements needed to recover ✓? now scales with s instead of d. While intuitive, the

mathematical machinery needed to prove such a result forms the basis of a rich field of

study called compressed sensing [7, 8, 9]. In the presence of sparsity, we can deploy the

regularized least-squares estimator

✓̂ = argmin
✓

nX

i=1

(yi � hxi,✓i)2 + �k✓k1

to estimate ✓?. The `1 norm is chosen as a convex regularizer that enforces sparsity. Results

from compressed sensing dictate that n & s measurements are needed to faithfully estimate

✓? (i.e., have squared estimation error scale like s/n, ignoring logarithmic factors.) This

result holds under a random sensing model with particular choices of distribution for xi and

✏i. One such distribution choice is that xi and ✏i are independent from each other and are

both drawn i.i.d from a standard Gaussian of correct dimension.

Analogous results hold in the matrix setting, which is considered in Chapter 3. When

trying to estimate high-dimensional matrices from linear (trace) measurements, a natural

form of structure is to assume that they are low-rank. Concretely, suppose we want to

estimate a square matrix ⌃? 2 Rd⇥d. Without structural assumptions, there are d
2 degrees

of freedom in the problem, necessitating n & d
2 measurements to achieve an squared

error k⌃? � b⌃k2F that scales like d2/n. However, if we assume that ⌃? is rank r, with

r ⌧ d, then the degrees of freedom is reduced to roughly rd (to see this, consider the
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singular value decomposition of ⌃?.) As a result, if the number of measurements satisfies

n & rd, the squared estimation error scales like rd/n. These specific results again depend on

specific distributional assumptions of random design and measurement noise, with one such

satisfactory distribution being standard Gaussian [10, 11]. To enforce low-rank structure,

we can utilize the nuclear norm as a form of regularization. The nuclear norm is computed

by taking the `1 norm of the singular values of a matrix, so when used as a regularizer, it

promotes sparsity in the singular values, inducing low-rank matrix estimates.

1.1.2 Learning from relational queries.

Mechanisms for collecting feedback from humans largely fall in two categories: cardinal

queries or ordinal queries. Cardinal queries elicit numerical responses from users that

answer “how much” of a particular quantity exists, whereas ordinal queries elicit relational

responses that indicate how particular items are ordered. These two query categories occupy

two different sides of a fundamental expressiveness-cognitive burden trade-off. On one hand,

ordinal queries have been shown to be more efficient in terms of cognitive load (i.e., they are

easy to respond to), but at the expense of expressiveness per query response [12, 13]. This

limited expressiveness is fundamental to ordinal queries. For example, saying one item is

“better” than another reveals no information about the absolute quality of both items, nor does

it reveal how close in quality the two items are. On the other hand, cardinal responses elicit

more expressive responses at the cost of cognitive burden. Obtaining absolute information

about an item’s quality is fundamentally a much richer response [14]. However, conveying

precise scores is both individual-specific and cognitively burdensome: different people may

have different scales [15] and their scales can drift over time [16, 17]. Such drawbacks make

aggregating responses across many users extremely difficult.

Because training large-scale models relies on aggregating human responses, cardinal

queries are often eschewed for their ordinal counterparts. This is best illustrated with the

standard procedure of finetuning language models with ranked human feedback as opposed
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to absolute scores. As a result, this thesis primarily focuses on ordinal queries. Humans

are presented with a set of items and asked about how items in the set related to each other.

There exists an expressiveness-cognitive load trade-off within the class of ordinal queries:

queries can be made more complex by increasing the size of the set of items presented to

the human, asking the human to respond to a more complex relation, or both. Naturally,

increasing the complexity of a query increases the amount of information the human is able

to convey in one interaction. However, this increase in information richness does not come

free; increasing the number of items users must consider increases the burden imposed on

the human [18].

A simple and popular relational query is the paired comparison, where the human is

presented two items and asked to respond with which item is more preferred. Such queries

appear in a variety of contexts, ranging from recommender systems [19, 20] to finetuning

language models [21, 22, 23, 24]. While easy to respond to, paired comparisons reveal

relatively little information per query. As a result, more complex extensions of the paired

comparison have been developed to extract richer responses. Examples include triplet

queries [25, 26] (“Which of items i1 or i2 is most similar to item j?”), the nearest neighbor

query [27] (“Which of items i1, . . . , in is most similar to item j?”), ranking queries [28]

(“Rank order items i1, . . . , in in relation to item j”).

Chapter 2 and Chapter 3 consider learning from relational queries using parametric

models of human preference or perception. To illustrate learning in these settings, we

consider the problem of learning from paired comparisons. Here, the goal is to estimate

some unknown parameter ✓? 2 Rd that characterizes human preferences or perception. For

convenient shorthand, we refer to this parameter ✓? as a user’s preference vector. To perform

statistical estimation, we typically assume that responses to paired comparisons follow a

known random response model. One such example is the Bradley-Terry model [29], which

dictates that a paired comparison response yi 2 {0, 1} between two items, described by
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feature vectors xi1 and xi2 , are Bernoulli distributed with mean parameterized by ✓?:

yi ⇠ Ber
✓

exp (f(xi1 ;✓
?))

exp (f(xi1 ;✓?)) + exp (f(xi2 ;✓?))

◆
.

Above f is some function that characterizes how “preferred” an item xij is. Popular

choices for f include the Euclidean inner product hxij ,✓
?i and distance kxij � ✓?k2. From

this response model, we can estimate the preference vector ✓? via maximum-likelihood

estimation:

✓̂ = argmin
✓

nX

i=1

log (1 + exp (f(xi1 ;✓
?)� f(xi2 ;✓

?)))� yi (f(xi1 ;✓
?)� f(xi2 ;✓

?)) .

When f is chosen to be the standard Euclidean inner product, estimation from paired

comparisons under the Bradley-Terry model coincides with logistic regression. As such,

this problem setting is well-studied, with a long line of work focused on deriving statistical

error bounds (e.g., [30, 31, 32, 33].) More generally, studying random response models that

better reflect human behavior has been the focus of recent efforts [34, 35, 36, 37, 38].

1.1.3 Generative language and image models.

Pretrained models with both rich learned representations and strong generative abilities are

prime candidates to augment the learning process, potentially allowing us to circumvent

collecting additional human feedback. This section aims to provide a brief overview of

contemporary generative models for natural language and images.

Natural language. The generative ability of large language models (LLMs) have demon-

strated strong abilities in generating and understanding natural language. As a result, models

such as GPT [39] or Llama [40, 41] are being deployed in many application areas from

summarizing documents to code generation to language translation. The work of Chapter 4

utilizes the strong generative abilities of LLMs to better align how users interact with an
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information retrieval system to the content within the retrieval system. As a result, the

retrieval system is capable of finding more relevant text without asking users for relevance

feedback. LLMs are the byproduct of scaling: they contain billions (or even trillions) of

parameters while trained on billions of tokens1. Such models are typically autoregressive

in nature: When generating the next word in a sequence, the model is only conditioned on

the previous words in the sequence. This modeling choice results in models that utilize

decoder-only transformer architectures [42].

In order to achieve such strong empirical performance, LLMs follow the standard

pre-train then finetune paradigm. During the pretraining stage, the emphasis is on data

volume. Billions of tokens of text are scraped from a wide variety of sources and used to

train the LLM in a self-supervised manner using a next token prediction objective. The

aim of pretraining is to endow the model with a general understanding of the patterns

and statistics that occur in natural language. From there, the model is adapted to specific

tasks via supervised finetuning, where the model is trained on higher quality, labeled, and

task-specific data. A final step in the current LLM development paradigm is to align models

with human preferences [22]. The LLM is asked to generate multiple outputs for a given

input, and humans are asked to rank the outputs based on specific desirable criteria, such

as factfulness, non-toxicity, or helpfulness. Models are then finetuned using reinforcement

learning to learn a preference scoring function [21, 22] or directly optimizing the language

model [24].

Images. Recent advancements in generative image modeling have yielded models capable

of synthesizing extremely realistic images. The work of Chapter 5 relies on the expressive

power of generative adversarial networks (GANs) [43]. GANs consist of a generator that

synthesizes new images and a discriminator that attempts to distinguish between synthesized

images and real images. These two models are trained in an adversarial manner, with the
1Tokens are chunks of text that models take as input or generate. They are typically shorter than words;

tokens typically contain approximately four English characters.
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generator attempting to “trick” the discriminator and the discriminator attempting to “catch”

the generator’s fake images. While this training procedure yields a generator capable of

synthesizing extremely realistic images, training is often unstable.

Early research efforts focused on training stability [44, 45]. Later work focused on

synthesizing larger and higher resolution images, leading to methods that progressively

grow an image during generation [46]. This line of work lead to the popular StyleGAN

variants [47, 48, 49], which utilized a novel style block architecture to allow for control

over generated style and attributes. Due to the control over generated attributes, image

editing with GANs has grown in popularity. To edit a real image, one must be able to find a

representation of that image in the GAN’s latent space, leading to increased efforts in the

field of GAN inversion [50]. Parallel efforts in large scale synthesis lead to BigGAN [51],

which is capable of class conditional synthesis at ImageNet scale. More recent efforts have

equipped GANs with the ability to generate images from user text inputs [52].

Diffusion models have become an increasingly popular type of generative image model

due to the quality of synthesized images [53]. Such models learn to transform a simple noise

distribution, such as Gaussian noise, to a target distribution, like natural images. Diffusion

models are applied incrementally, gradually removing noise step-by-step until realistic

samples of the target distribution are generated. This denoising process can occur in the

pixel space [54, 55, 56] or in the latent space of a pretrained autoencoder [57]. In contrast to

GANs, which exhibit fast inference speeds at the cost of synthesized image quality, diffusion

models are generally capable of producing higher quality and more diverse images.

1.2 Thesis overview

The technical content of this thesis is organized into two parts. Part I investigates how

to better learn from human feedback, whereas Part II studies how to circumvent human

feedback in two concrete problem settings. Here, we provide a brief overview of the

technical content in each of the two sections.
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1.2.1 Learning with human feedback

Part I contributes to improving how we learn from human feedback in two distinct ways. In

Chapter 2, we study an established human feedback mechanism, the paired comparison, and

show that one can learn a much richer characterization of user preferences than previously

thought. In Chapter 3, we propose a novel mechanism for collecting human feedback which

balances informativeness per query and cognitive load. While not appearing in this thesis,

I have also contributed to the development of a novel type of relational query, named the

nearest neighbor query to bridge the gap between active classification and metric learning.

We do not present this work in this thesis, but instead refer the interested reader to [27].

Simultaneous preference and metric learning from paired comparisons. In this chapter,

I start with a very simple existing query, the paired comparison, and show that from binary

responses, one can learn both a user’s preferences and how they make their preference

judgements. Specifically, under a distance based model for human preference, paired

comparison responses are capable of localizing a user’s preference point while also learning

the distance metric under which users make their comparison judgments. Existing results

from learning from paired comparisons have exclusively focused on learning either the

user’s preference point or a Mahalanobis distance metric. The work in this chapter reveals

that the expressive power of paired comparisons has been underestimated in such prior

work: joint estimation of preference points and distance metrics is possible from just paired

comparison responses. The main contributions of this chapter are (1) the derivation of an

estimator for this joint problem and (2) validation of this estimator on both synthetic and

real-world data.

Perceptual adjustment queries and an inverted measurement paradigm for low-rank

metric learning. In this chapter, I propose the perceptual adjustment query (PAQ), a novel

mechanism for collecting human feedback. Users are presented with a reference item and
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a continuous set of points emanating from the reference item, and asked to select the first

item along the path that is different from the reference. This query construction leverages

the continuous nature of both human perception and features spaces used in contemporary

machine learning models to balance cognitive burden and informativeness. Specifically,

we study the problem of learning a low-rank Mahalanobis distance metric from PAQs in a

high-dimensional setting. This problem gives rise to a novel type of measurement scheme for

the typical low-rank matrix sensing problem, leading to the development of new statistical

estimators. We rigorously prove sample complexity bounds under and validate our results

with synthetic experiments.

1.2.2 Circumventing human feedback

Part II studies two concrete problems where human feedback cannot be collected. In order

to circumvent using or collecting human feedback, both problems leverage the abilities of

pretrained generative models. In Chapter 4, we study a large language model augmented

retriever for the problem of personalized educational content retrieval. In Chapter 5, we

leverage existing labeled images to remove a human-in-the-loop component of a synthetic

dataset generation framework.

Large language model augmented exercise retrieval for personalized language learning.

In this chapter, I study the problem of exercise retrieval for online language learners. Due

cold-start constraints, user data is not often available at the quantity or quality necessary

to train a recommendation system end-to-end. Despite this, language learning is a highly

personalized setting, meaning strong personalization tools are necessary, even during this

cold-start phase. Towards more reliable retrieval in this setting, we propose a zero-shot

retrieval framework that utilizing the generative capabilities of large language models

(LLMs). Our investigations reveal a fundamental semantic gap between how users express

what they want to learn and the actual exercise content. In lieu of manually collecting
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relevance data and learning a gap-aware representation space, we propose using an off-

the-shelf embedding model along with the generative abilities of an LLM. Coupled with a

contrastive pretraining step that exploits inherent structure in exercise content, our framework

is capable of outperforming several competitive existing retrieval systems, highlighting how

the generative abilities of LLMs can be used to circumvent the need for collecting human

relevance data.

Labeled dataset generation with no additional human annotations. In this chapter,

I study the problem of synthetic dataset generation without humans-in-the-loop in the

image domain. Existing frameworks for generating synthetic datasets with pixel level

labels (e.g., semantic segmentation masks) require humans to manually annotate images

produced by a generative image model. Such a requirement imposes harsh practical and

methodological constraints: not only does one incur heavy start-up costs in establishing

labeling infrastructure, one needs to invest financial resources paying annotators and auditing

results. Relying on a human-in-the-loop imposes additional bottlenecks in experimentation:

labeling must be complete before experiments can begin, training data is limited to images

that have been labeled, and continuous valued labels, such as depth maps, cannot be

collected from human annotators. Labeling labeled synthetic images further limits the

usefulness of labeled data in different applications. We propose a framework to re-use

existing labels of real images to train a synthetic dataset generation framework. We highlight

how unsupervised machine learning techniques, specifically from the field of GAN inversion

coupled with rich representations learned by generative models, can remove the need for

humans in the loop entirely. Using a small number of labeled images (<50), we are able to

achieve state-of-the-art performance in few-shot semantic segmentation, keypoint detection,

and depth estimation.
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Part I

Learning with human feedback
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CHAPTER 2

LEARNING FROM SIMPLE HUMAN QUERIES: SIMULTANEOUS

PREFERENCE AND METRIC LEARNING FROM PAIRED COMPARISONS.

In this chapter1, we show that the expressiveness of an extremely simple query, the paired

comparison, is much greater than established in previous work. In the context of human

preference learning, previous work has established that localizing a user’s preference point

from paired comparisons is feasible. We show that from the same comparison responses,

joint estimation of a user’s preference point and a distance metric under which preference

judgements are made is possible. Specifically, we present a novel approach to estimate the

user’s ideal point u and the Mahalanobis metric from paired comparisons of the form “item

i is preferred to item j.” This can be viewed as a special case of a more general metric

learning problem where the location of some points are unknown a priori. We conduct

extensive experiments on synthetic and real-world datasets to exhibit the effectiveness of

our algorithm.

2.1 Introduction

Personalized recommendation and ranking algorithms have become increasingly important

in recent years, influencing not only the items a user buys and movies he or she watches, but

also potentially influencing which job candidates are interviewed, which college applicants

are admitted, and even the matching behavior of online dating services. While there are a

number of approaches to developing personalized recommendation systems, a particularly

common approach uses a classical model for user preference known as the ideal point model

[58]. In this model a user’s preferences are represented as a point u 2 Rd that is embedded

in the same space as a set of items x1, . . . ,xn 2 Rd (movies, shoes, food, etc). The key
1The work in this chapter appears in [1]
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model assumption is that the closer an item xj is to u, the more the user will prefer item xj .

We note that the ideal point is not necessarily a specific item xi, but rather represents the

combination of features that the user most prefers. The ideal point model is an intuitive and

interpretable way to model preferences and has been empirically shown to exhibit superior

performance compared to other models of preference [59, 60].

In a practical system, the main challenge is to learn the latent u that represents a

particular user’s preferences. Given a precise quantification of a user’s preferences for a

number of items, one could infer the distances from u to those items and then easily estimate

a good embedding u. In practice, however, users find paired comparison queries of the form

“do you prefer item i or item j” to be far easier to answer [18, 12]. As a result, a number of

approaches to learning to rank from such paired comparisons have been proposed in recent

years [61, 62, 63, 64, 30, 31, 65, 66, 67, 68, 69]. In the specific context of ideal point models,

such queries allow the user to reveal which of the two items is closer to their ideal point.

There is now a range of both practical algorithms for estimating u from such queries as well

as theoretical treatments analyzing the performance of these algorithms in terms of error

bounds and/or sample complexity guarantees [70, 64, 71, 72, 73, 74, 75, 26, 76, 77, 78].

While the problem of learning from paired comparisons in the ideal point setting is now

well-understood, the vast majority of past work has only examined the case where the user

makes judgements under the standard Euclidean distance metric. Assuming a Euclidean

metric imposes two main limitations. First, it does not allow for features to interact. In

practice, features often complement or compensate for each other. For example, consider

the process of purchasing shoes. Each shoe can be described in terms of features such as

color, price, materials, etc. An individual may prefer a cost of $50 and a particular material.

However, if the price was set instead to $200, the user’s preferred material may change

to reflect the change in price – an effect that cannot be accommodated by a Euclidean

(isotropic) metric. Second, the Euclidean metric assumes that all features are of equal

importance to the user, which is often not the case. In the shoe purchasing example, a price
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conscious consumer may prioritize finding the best “bang for their buck,” in which case a

lower price and higher quality of material would be prioritized over aesthetic features such

as color.

To overcome these limitations, we consider the case where the user makes comparisons

between items under a Mahalanobis distance. Specifically, let ⌃? 2 Rd⇥d be a symmetric

positive definite matrix and set kxk⌃? =
p
xT⌃?x. Then kx�yk⌃? defines a Mahalanobis

distance between x and y. This metric captures both feature interactions and the relative

significance of those feature interactions via the eigenvalue decomposition ⌃? = V ⇤V T .

The eigenvectors specify how features can interact to jointly affect preferences, and the

eigenvalues allow for different combinations of features to play a larger or smaller role.

See Section 2.4.2 below for a concrete example.

While a Mahalanobis metric allows for more flexible and powerful models of preference,

the appropriate choice of ⌃? will in general be unknown a priori. In this chapter, we

develop a novel method to jointly learn both the ideal point and Mahalanobis metric from

paired comparisons, which to the best of our knowledge represents the first approach for

solving these problems simultaneously. By leveraging the structure of paired comparisons,

we develop a simple convex optimization program that estimates ⌃? and can then directly

solve for u. In the process, we also effectively learn the user’s ranking of the items. We

also explore the possible benefits of a more sophisticated alternating scheme that iteratively

refines the estimates of ⌃? and u. We demonstrate the effectiveness of our approach through

experiments on both synthetic and real-world datasets.

2.2 Related work

Our work naturally builds on the existing literature on learning from paired comparisons,

taking particular inspiration from the convex optimization approach to non-metric multidi-

mensional scaling of [70] and the approaches in [64, 71, 74, 78] to developing algorithms

for the ideal point setting. We also build on the extensive prior work on metric learning.
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Learning a metric from paired comparisons was introduced in [79], where the authors

assume the distance is parametrized by a known matrix A and a weighting matrix W with

non-negative diagonal entries. W is learned via a convex program by manipulating the

form of diagonal matrix multiplication. Setting A to I does not allow for feature interac-

tions, whereas picking more complex A without overfitting the training data is non-trivial.

Similarly in [80], the authors minimize the squared-hinge loss of differences in distances

of pairs of items. However, the user is presented with two pairs of items must pick which

pair of items is more similar, which is a more complex querying scheme for the user to

answer. The same query type is used to learn a metric for images in [81]. The performance

of nearest-neighbor-based classifiers have also benefited from learning a Mahalanobis metric

that enhances class separation [82], where here class membership is used to inform the

learning process.

Metric learning has also been explored in prior work on recommendation systems. For

example, [83], [84], and [85] all learn Mahalanobis metrics for ranking given a known

reference point and sets of similar and dissimilar items. Using sets of positive and negative

items for each user, [86] learns a personalized projection operator for each user and estimates

user preference in the learned latent space. In a similar setting, [87] learns transformed

ideal points and items directly before learning a metric. Finally, [38] assumes each user

has an ideal feature vector where user preference is measured by the inner product of this

ideal feature vector with an item’s feature vector and develops a feature selection scheme

to account for intransitivity in noisy comparison outcomes while learning an ideal feature

vector.

Our work differs from the above in that it uniquely assumes that both the metric and

ideal point are unknown. Thus, it can be viewed as a more generalized metric learning

problem where some of the data are missing. Most existing metric learning papers avoid the

problem of knowing a user’s preference by assuming a known reference point or utilizing

more difficult queries (asking the user to compare two pairs of items). Based on this prior
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work, it might be unclear if simultaneous recovery of an unknown metric and ideal point is

even feasible, but we show that it is indeed possible.

2.3 Observation model and estimation strategy

2.3.1 Observation model

For simplicity, we will begin by considering the noiseless observation model where the user

always prefers the item closest to the user’s ideal point u under the Mahalanobis distance

metric induced by ⌃?, where ⌃? is a symmetric positive definite matrix. To be more

concrete, we let � 2 Rn be the vector with entries �i = kxi �uk2⌃? . We let y 2 Rm denote

our observations, where the k
th element of y denotes the outcome of the k

th comparison

(between items xik and xjk) and is given by

yk = sign(�ik � �jk). (2.1)

For now we assume that the set of indices ⌦ = {(i1, j1), . . . , (im, jm)} corresponding to

the items compared contains each pair of indices at most once, although our methods

could easily be adapted to the case where ⌦ is a multiset. We will assume throughout our

treatment that the embedding of the items x1, . . . ,xn is fixed and known, as in a mature

recommendation system. This embedding may correspond to known and interpretable

features or be learned from other side information (or even paired comparisons, following a

strategy along the lines of [88]).

Before we describe our estimation strategy, a few observations are in order. First, note

that y consists of (1-bit) quantized samples of the n⇥ n matrix � = �1T
n � 1n�T , where

1n 2 Rn is the vector of all ones. It will also be useful to work with the vectorized version
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of �, which we will denote by � and can be written as2

� = (1n ⌦ In � In ⌦ 1n)�,

where In denotes the n ⇥ n identity matrix and ⌦ denotes the Kronecker product. For

conciseness, we will let Q = 1n ⌦ In � In ⌦ 1n.

To index into �, we map every (ik, jk) 2 ⌦ to a linear index between 1 and n
2 defined

as � = {(ik � 1)n+ jk : (ik, jk) 2 ⌦}. We can equivalently write our observation model in

(Equation 2.1) as

y = sign(��) = sign(Q��), (2.2)

where the notation �� and Q� indicates the vector or matrix obtained by selecting only the

indices/rows indexed by �.

2.3.2 Estimation from unquantized observations

To gain some insight into this problem, we will temporarily ignore the quantization and

suppose that we have direct access to �� – in this case, how might we go about estimating

⌃? and u?

Consider �ik = kxik �uk2⌃? and �jk = kxjk �uk2⌃? for any (ik, jk) 2 ⌦. Then, for the

linear index p corresponding to (ik, jk), �p = kxik � uk2⌃? � kxjk � uk2⌃? . Observe that

when we expand these terms we can cancel the coupled term uT⌃?u, greatly simplifying

our subsequent analysis:

�p = kxik � uk2⌃? � kxjk � uk2⌃?

= xT
ik
⌃?xik � 2xT

ik
⌃?u+ uT⌃?u� (xT

jk
⌃?xjk � 2xT

jk
⌃?u+ uT⌃?u)

= xT
ik
⌃?xik � xT

jk
⌃?xjk � 2(xik � xjk)

T⌃?u (2.3)

2Note that this follows from the general identity vec(ABC) = (CT ⌦A)vec(B).
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If we define

R =

2

66666664

— (xi1 � xj1)
T —

— (xi2 � xj2)
T —

...

— (xim � xjm)
T —

3

77777775

S =

2

66666664

— (xi1 + xj1)
T —

— (xi2 + xj2)
T —

...

— (xim + xjm)
T —

3

77777775

then we can write (Equation 2.3) more concisely as

�� = diag(S⌃?RT )� 2R⌃?u, (2.4)

where diag(A) returns the diagonal of A 2 Rn⇥n as a column vector. For brevity, let

a⌃? = diag(S⌃?RT ). We now observe that if we observed �� directly and already knew

⌃?, then we could estimate u by solving a standard least squares problem, resulting in the

estimate

bu =
1

2
(⌃?)† R†(a⌃? � ��). (2.5)

Plugging this estimate into (Equation 2.4), we obtain a simple system of equations that is

linear in ⌃?:

�� = a⌃? � 2R⌃?(
1

2
(⌃?)† R†)(a⌃? � ��)

= a⌃? �R⌃? (⌃?)† R†(a⌃? � ��)

= a⌃? �RR†(a⌃? � ��),

where the last equality follows from the fact that ⌃? is assumed to be positive definite (and

hence full-rank). Rearranging terms, we obtain the more convenient expression

0 = (I �RR†)(a⌃? � ��). (2.6)
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2.3.3 Single-step estimation from quantized observations

Given direct observations of ��, we could immediately estimate ⌃? using (Equation 2.6).

However, our observations as in (Equation 2.2) are (1-bit) quantized. In this case, using

(Equation 2.6), we can instead formulate a constrained optimization problem to jointly

estimate an ⌃? and a set of distances � (and hence ��) that are consistent with both

our observations y and (Equation 2.6). Specifically, we will aim to find a solution that

satisfies (Equation 2.6) while minimizing `(�), where `(�) is a loss function that encourages

� to be such that that the signs of entries of �� = Q�b� are consistent with the observed

comparisons. For example, one could set `(�) to be the hinge loss:

`(�) =
mX

k=1

max(0, 1� yk(Q��)k), (2.7)

where (Q��)k denotes the k
th element in the vector Q��. In the remainder of this chapter

and in our experiments, we use the hinge loss, but our framework could easily be extended

to accommodate any convex loss. Finally, in our proposed approach we also introduce slack

variables ⇣ 2 Rm to loosen the constraint (Equation 2.6) to improve stability and robustness

to noise, and also introduce terms to the objective function to allow for a small amount of

regularization on both ⌃? and �:

(b⌃, b�, b⇣) = argmin
⌃?,�,⇣

`(�) + �1k⇣k1 + �2k⌃?k2F + �3k�k22 (2.8)

s.t. � ⇣  (I �RR†)(diag(S⌃?RT )�Q��)  ⇣

⇣ � 0, ⌃? < 0.

The first two constraints aim to enforce (Equation 2.6), while the final constraint enforces

that b⌃ is symmetric positive semi-definite. The constants �1, �2, �3 are parameters set

by the user to control the amount of regularization. The above formulation is a convex

(semi-definite) program and can be solved by standard tools such as CVX [89, 90].
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With b⌃ in hand, we can then immediately solve for bu via (Equation 2.5). However, since

we do not expect our estimate ⌃? to be perfect, we instead use the regularized estimate:

bu =
1

2
(b⌃RTRb⌃+ ↵I)�1 b⌃RT (ab⌃ �Q�b�), (2.9)

where ↵ is a regularization parameter set by the user. We will see in Section 2.4 that this

simple single-step estimation procedure of estimating ⌃? followed by u is surprisingly

effective.

2.3.4 Noise considerations

A common noise setting is when paired comparison outcomes are made with respect to

differences in distances corrupted by additive i.i.d noise. Such noise may arise from an

imperfectly learned embedding or as a way of modeling response errors. While we pose the

problem in a noiseless environment for simplicity, the estimation strategy outlined above

can be adapted to accommodate such noise by replacing the loss function in (Equation 2.7)

with the negative log-likelihood of observing comparison outcomes given a noise model,

provided that the log-likelihood function is concave. For example, suppose we assume

paired comparison outcomes follow the Bradley-Terry model [29], i.e.,

P(xi � xj) =
e
�kxi�uk2⌃?

e
�kxi�uk2

⌃? + e
�kxj�uk2

⌃?
, (2.10)

where xi � xj denotes that item xi is preferred to item xj . Let yk denote the outcome

of the k
th comparison, with yk = �1 if xi � xj and yk = +1 if xj � xi. Then, we can

replace the loss function in (Equation 2.7) with the negative log-likelihood of observing the

m paired comparison outcomes:

`(�) =
mX

k=1

log(1 + e
�yk(Q��)k), (2.11)
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where (Q��)k denotes the k
th entry of the vector Q��

2.3.5 Alternating estimation

While the single-step approach described above is appealing due to its simplicity, the

process of dividing the problem into first estimating ⌃? and then estimating u suggests a

natural extension of then taking our estimate of u and refining our estimate of ⌃?, and then

iteratively alternating between these two problems to (potentially) improve our estimates.

Specifically, after obtaining b⌃ and bu using (Equation 2.8) and (Equation 2.9), we can set

b⌃(0) = b⌃ and bu(0) = bu. Then, for iteration k > 0, we re-estimate ⌃? by solving the

following optimization problem that replaces the constraint from (Equation 2.6) with the

constraint from (Equation 2.4) to allow us to directly incorporate our previous estimate of

u:

(b⌃(k)
, b�(k)

, b⇣(k)) = argmin
⌃?,�,⇣

`(�) + �
(k)
1 k⇣k1 + �

(k)
2 k⌃?k2F + �

(k)
3 k�k22 (2.12)

s.t. � ⇣  diag(S⌃?RT )�Q�� � 2R⌃?bu(k�1)  ⇣

⇣ � 0, ⌃? < 0.

We can then update our estimate of u as before:

bu(k) =
1

2
(b⌃(k)RTRb⌃(k) + ↵

(k)I)�1 b⌃(k)RT (ab⌃(k) �Q�b�(k)).

Note that we allow the regularization parameters to change across iterations. In practice we

fix �
(k)
1 , �(k)

2 , �(k)
3 , and ↵

(k) for all iterations k � 1, but we do consider an alternative set of

parameters for the initialization (k = 0). This is somewhat natural since the initialization

step actually involves solving a slightly different optimization problem.
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2.3.6 Identifiability of the metric and ideal point

We conclude our description of our approach with a brief discussion of the degree to which

the ideal point u and metric ⌃? are potentially identifiable.

Proposition 1. For a fixed ⌃? 2 Rd⇥d, the ideal point u is identifiable if and only if ⌃? is

(strictly) positive definite.

The proof is provided in the supplementary material and is similar to the proof of

Proposition 3 in [38]. This result is not surprising, as if ⌃? is rank-deficient, any part of

u 2 ker(⌃?) will be not recoverable. We note that, since we desire our constraint set to be

closed, our estimation procedure enforces a positive semi-definite constraint. In practice, if

⌃? is ill-conditioned, we may estimate a solution which is rank-deficient (which ignores the

eigenvectors corresponding to relatively small eigenvalues), and thus the portion of u in the

span of these eigenvectors may be extremely difficult to estimate. Note, however, that due

to the influence of ⌃?, the unidentifiable portion of u also plays little role in determining

the underlying preferences. In recognition of this, we typically quantify our estimation

performance in terms of kbu� uk⌃? .

We also note that, at least in the noise-free setting considered in this chapter, even if the

metric is fully identifiable, it will only be so up to a constant scaling factor. However, note

that a constant scaling factor does not change the learned ideal point or ranking of items. To

see why this is true, note that for any ⌃? and � satisfying the constraint in (Equation 2.4),

rescaling ⌃? and � (and hence ��) by an arbitrary constant c > 0 will yield another valid

solution. However, it is relatively easy to show that for arbitrary scaling of ⌃? and ��,

the estimate provided by (Equation 2.5) of bu, as well as the resulting ranking of the items,

remains unchanged.

Finally, we also note that when recovering ⌃?, if a subset of the eigenvalues of ⌃? are

equal or relatively close, it becomes impossible, or at least more difficult, to distinguish

among the specific eigenvectors. In this case, our estimate may swap the order of the
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eigenvectors or learn different eigenvectors that span a similar space to the original, but can

be quite different. As with scaling, this has little impact on estimating u or in terms of the

resulting rankings, but plays an important factor in determining the appropriate evaluation

metrics.

2.4 Experiments

2.4.1 Synthetic experiments

In this section, we demonstrate the effectiveness of the joint estimation on synthetically

generated data. We assume a priori knowledge of an existing embedding of items and

estimate u and ⌃?. In each simulation, n items x1, . . . ,xn are generated uniformly on the

hypercube [�2, 2]d and one user u is generated uniformly on [�1, 1]d. A positive definite

matrix ⌃? is generated by ⌃? = LTL, where the entries of L 2 Rd⇥d are drawn from the

standard normal distribution. Comparisons are chosen uniformly without repetition and

used to estimate the metric and ideal point.

Certain conditions are imposed on the matrix ⌃?: 1) The Frobenius norm of ⌃? exceeds

a small chosen threshold ✏F , 2) The smallest singular value of ⌃? is larger than a small

chosen threshold ✏S , and 3) The fraction k⌃?uk2/kuk2 exceeds a small chosen threshold

threshold ✏P . ✏F and ✏S are imposed to guard against numerical instabilities while ✏P is

necessary to ensure that u is identifiable. For all synthetic experiments, the chosen values

were ✏F = 0.5, ✏S = 0.25, and ✏P = 0.2.

We define the user’s ideal point reconstruction (UR) error as kbu�uk2⌃?/kuk2⌃? . Letting

the eigendecompositions of ⌃? and b⌃ be V ⇤V T and bV b⇤ bV T , respectively, we define the

weighted eigenstructure reconstruction (WER) error as k⇤� |V T bV |�⇤k2F/k⇤k2F , where

� denotes element-wise multiplication and |A| takes the element-wise absolute value of

A. When b⌃ is recovered to be a scaled version of ⌃?, we expect the diagonal elements of

|V T bV | to be 1. In all cases when the WER error is small, ⌃? is recovered well. However,

there are instances in which a high value of the WER error does not imply a poor estimate
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Figure 2.1: Median UR error, WER error, and interpolated median fraction of top 10
items identified over 100 trials, plotted with 25% and 75% quantiles. As the number of
comparisons grows, both UR and WER error decrease to 0 as the fraction of top 10 items
increases to 1 for all d. Regularization parameters: �1 = 2, �2 = 0.002, �3 = 0.001,↵ = 1.

of ⌃?. For example, (large) repeated eigenvalues in ⌃? would result in a large WER error if

the eigenvectors in bV differed, but spanned the same space. Our synthetic data avoids this,

but care is needed to quantify performance in general.

Single-step estimation In the first simulation, we show the improvement in estimation

as the number of comparisons increases. For a fixed number of comparisons, we perform

100 trials and report the median UR error and WER error, and interpolated median of the

fraction of the top 10 closest items to u identified for d = 2, 5, and 10. Since the fraction of

the top 10 items is discrete, we utilize the interpolated median in place of the usual median.

In all cases, we include the 25% and 75% quantiles. For each trial, we generate a new metric,

ideal point, and n = 100 items.

As shown in Figure 2.1, when a small number of comparisons are used for joint estima-

tion, the UR and WER error are large, while the fraction of top 10 items correctly identified

is small. As the number of comparisons increases from 10 to 500, the UR and WER errors

decrease rapidly, while the fraction of top 10 items increases rapidly.

In the second simulation, we compare the performance of our algorithm against two

algorithms that assume Euclidean distance to estimate the ideal point. Euclidean Algorithm

1 is an adaptation of our single-step algorithm to solve for only the distances �e between
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Figure 2.2: Comparison of singe-step estimation against Euclidean Algorithms 1 and 2 when
the true distance metric is ⌃? 6= I . Regularization parameters: �1 = 2, �2 = 0.002, �3 =
0.001,↵ = 1.

items and the ideal point:

(b�e,
b⇣) = argmin

�,⇣
`(�e) + �1k⇣k1 + �2k�ek22 (2.13)

s.t. � ⇣  (I �RR†)(diag(SRT )�Q��e)  ⇣, ⇣ � 0.

From here, we can solve for bu by replacing replacing b⌃ with I in (Equation 2.9). Euclidean

Algorithm 2 is the approach in [74], which directly solves a convex program for u from the

paired comparisons.

We sweep the performance for all three algorithms for d = 2 over different numbers

of comparisons between 10 and 500. For a fixed number of comparisons, we perform 100

trials and report the median (or interpolated median) and 25% and 75% quantile for UR

error, normalized Kendall’s Tau distance, and the fraction of top 10 items identified. For

each trial, we generate a new metric and ideal point and n = 100 new items. As seen in

Figure 2.2, our algorithm outperforms both algorithms that assume a Euclidean distance

metric by recovering a more accurate ideal point, ranking of items, and fraction of top K

items. The same experiment was performed when ⌃? = I for all trials with very little loss

in performance by using our algorithm (see the supplementary material for further details).
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Figure 2.3: UR error for single-step and alternating estimation. Regularization parameters:
�
(0)
1 = 2, �(0)

2 = 0.002, �(0)
3 = 0.0001,↵(0) = 1; �(k)

1 = 2
3 , �

(k)
2 = 1

15 , �
(k)
3 = 7

1500 ,↵
(k) = 1

2
for k � 1.

Alternating estimation We now explore the potential improvements that can be attained

by our alternating estimation procedure. For d = 5, we fix an ideal point, metric, and a set

of n = 100 items, and vary the number of comparisons. For a fixed number of comparisons

m, we run 100 trials, where we select m new comparisons at random. We then run the

alternating descent until the difference in the user reconstruction error between successive

iterations is less than 10�3, with a maximum number of iterations set to 100. We report

the median and 25% and 75% quantiles for the initial and final UR error in Figure 2.3.

We observe that alternating estimation does not improve the estimate of u much when the

number of comparisons is small (< 40) or large (> 200). In the first regime, the comparisons

do not reveal enough information to reliably recover u, while in the second regime, the

number of comparisons is sufficient to make the single-step estimation very accurate. The

alternating method offers steady improvement in the intermediate regime, and is able to

successfully reduce the error nearly 60%.

2.4.2 Graduate admissions dataset

We now apply our models to two PhD program admissions datasets from Georgia Tech

School of Electrical and Computer Engineering. The Unranked Candidates dataset consists

of over 3,000 applicants in three categories: 1) admitted with fellowship, 2) admitted, and 3)
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denied admission. The applicants are not ranked, so the only paired comparisons we can

form are across categories. We assume that fellowship recipients are preferred to admitted

candidates, who are preferred to denied candidates, so for nF fellowship recipients, nA

admitted candidates, and nD denied candidates, we can form at most nF (nA + nD) + nAnD

comparisons. For each applicant, we have access to five features: GPA, GRE quantitative,

verbal, and analytical writing scores, and a letter of recommendation (LoR) score. Each

candidate’s GPA is normalized to a 4.0 scale. The GRE verbal and quantitative scores are

integers between 130 and 170, inclusive, while the GRE writing score is from 0 to 6 in 0.5

increments. Each candidate submitted at most three letters of recommendation, each of

which is scored on a scale of 0 to 3. The scores are averaged and then exponentiated to

obtain a LoR score between 1 and e
3 ⇡ 20.09.

The Ranked Candidates dataset consists of 88 applicants who are scored on a scale of 1

to 10, with 1 being the most preferred and 10 being least preferred. The top 11 candidates are

uniquely rank ordered, and the rest of the candidates are sorted into 8 bins of various sizes.

We only form comparisons between candidates with different scores, so two candidates with

the same score are not compared. For each applicant, we have access to the same features

except for letter of recommendation scores.

Unranked Candidates We begin by noting that the features being used in this model are

inherently restrictive. Applicants are evaluated on many criteria beyond the features included,

which can lead to occasional unexpected results. For instance, there exist large subsets of

denied candidates whose average GRE scores are higher than those of a some fellowship

recipients, which might indicate that a lower GRE score is more favorable, occasionally

leading to rather unusual ideal point placement. In reality, we would expect that the optimal

set of features should be the maximum value for all possible features. Furthermore, of the

five features, we suspect that the GRE verbal score should likely matter the least, followed

by the GRE quantitative score, as applicants from across the categories score similarly on
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Figure 2.4: Level sets for learned met-
ric for Unranked Candidates GRE verbal
and quantitative scores. Regularization
parameters: �1 = 1

650 , �2 = 1
6500 , �3 =

2
65 · 10

�6
,↵ = 1.

Figure 2.5: Fraction of top 11, 17, and
22 of ranked candidates identified. Reg-
ularization parameters: �1 = 3

800 , �2 =
1

8000 , �3 =
5
8 · 10

�11
,↵ = 1.

these two GRE sections. Our expectation is that the most significant features should be some

combination of GRE writing, GPA, and LoR. With this in mind, we use our algorithm to

learn relevant feature interactions and confirm our hypothesized ordering of the importance

of features via the learned metric. We take nF = 33, nA = 33, and nD = 34, form all

3333 possible comparisons, and learn the ideal point u and metric ⌃? using a subset of all

features.

When all five features are used to learn bu and b⌃, our hypothesized ordering of importance

for the features is correct. The three most significant features are a weighted difference

between GPA and GRE writing, a weighted sum of GPA and GRE writing, and the LoR

score. The learned ideal scores are 158.08 GRE verbal, 162.50 GRE quantitative, 4.68

GRE writing, 4.06 GPA, 15.28 LoR score. As seen in Figure 2.4, when the GRE verbal

and quantitative scores features are used, the learned feature interactions are a weighted

difference (eigenvector 1) and sum (eigenvector 2) of GRE verbal and quantitative scores.

The structure of the learned metric seems to make intuitive sense, indicating that in order to

compensate for a slightly lower GRE quantitative score, one must score significantly higher

on the GRE verbal section.
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Ranked Candidates Since ranking information is partially available in this dataset, we

record the fraction of top K = 11, 17, and 22 candidates correctly identified as the number

of comparisons increases using all four features. For a fixed number of comparisons, we

perform 20 trials and report the mean and standard deviation of the fraction of the top K

candidates correctly identified in Figure 2.5. The fraction of the top K candidates correctly

identified for K = 11, 17, and 22 increases rapidly as the number of comparisons increases.

With less than 20% of the total number of comparisons, we can identify over 90% of the top

22 and 17 candidates and over 80% of the top 11 candidates correctly.

2.5 Conclusions

In this chapter, we develop a method for jointly learning a user’s ideal point and an underlying

distance metric from paired comparisons. The metric captures feature interactions and their

relative significance to users, neither of which are captured by the traditional Euclidean

metric. We demonstrate our algorithm can correctly identify the ideal point and metric and

can correctly rank graduate admission candidates and determine feature interactions on real-

world data. We conclude by noting that in the Euclidean setting, adaptive querying schemes

have been shown to enable dramatic reductions in the required number of comparisons [64,

91]. We expect similar gains are possible in our setting. Developing novel methods for

adaptively selecting comparisons to maximize the amount of information collected about

both u as well as ⌃? is an important avenue for future research.
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CHAPTER 3

DESIGNING MECHANISMS FOR RICHER HUMAN FEEDBACK: PERCEPTUAL

ADJUSTMENT QUERIES AND AN INVERTED MEASUREMENT PARADIGM

FOR LOW-RANK METRIC LEARNING

In this chapter1, we introduce a new type of query mechanism for collecting human feedback,

called the perceptual adjustment query (PAQ). Being both informative and cognitively

lightweight, the PAQ adopts an inverted measurement scheme, and combines advantages

from both cardinal and ordinal queries. We showcase the PAQ in the metric learning

problem, where we collect PAQ measurements to learn an unknown Mahalanobis distance.

This gives rise to a high-dimensional, low-rank matrix estimation problem to which standard

matrix estimators cannot be applied. Consequently, we develop a two-stage estimator for

metric learning from PAQs, and provide sample complexity guarantees for this estimator.

We present numerical simulations demonstrating the performance of the estimator and its

notable properties.

3.1 Introduction

Should we query cardinal or ordinal data from people? This question arises in a broad

range of applications, such as in conducting surveys [92, 93, 94], grading assignments [95,

96], evaluating employees [97], and comparing or rating products [98, 99], to name a few.

Cardinal data are numerical scores. For example, teachers score writing assignments in the

range of 0-100, and survey respondents express their agreement with a statement on a scale

of 1 to 7. Ordinal data are relations between items, such as pairwise comparisons (choosing

the better item in a pair) and rankings (ordering all or a subset of items). There is no free

lunch, and both cardinal and ordinal queries have pros and cons.
1The work in this chapter appears in [2]
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On the one hand, collecting ordinal data is typically more efficient in terms of worker time

and cognitive load [13], and surprisingly often matches or exceeds the accuracy of cardinal

data [92, 13]. The information contained in ordinal queries, however, is fundamentally

limited and lacks expressiveness. For example, pairwise comparisons elicit binary responses

where two items are compared against each other, but the absolute placement of these

items with respect to the entire pool is lost. On the other hand, cardinal data are more

expressive [14]. For example, assigning two items scores of 1 and 2 conveys a very different

message from assigning them scores of 9 and 10, or 1 and 10, although all yield the same

pairwise comparison outcome. However, the expressiveness of cardinal data often comes

at the cost of miscalibration: Prior work has shown that different people have different

scales [15], and even a single person’s scale can drift over time (e.g., [16, 17]). These

inter-person and intra-person discrepancies make it challenging to interpret and aggregate

raw scores effectively.

The goal of this chapter is to study whether one can combine the advantages of cardinal

and ordinal queries to achieve the best of both worlds. Specifically, we pose the research

question:

Can we develop a new paradigm for human data elicitation that is expressive,

accurate, and cognitively lightweight?

Towards this goal, we extract key features of both cardinal and ordinal queries, and propose

a new type of query scheme that we term the perceptual adjustment query (PAQ). As a

thought experiment, consider the task of learning an individual’s preferences between modes

of transport. The query can take the following forms:

• Ordinal: Do you prefer a $2 bus ride that takes 40 minutes or a $25 taxi that takes 10

minutes?

• Cardinal: On a scale of 0 to 1, how much do you value a $2 bus ride that takes 40

minutes?
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• Proposed approach: To reach the same level of preference for a $2 bus trip that takes 40

minutes, a taxi that takes 10 minutes would cost $x.

Figure 3.1: The user interface for perceptual adjustment query (PAQ) for preference learning
(top) and similarity learning (bottom).

A user interface for the proposed approach is shown in Figure 3.1 (top). We present the

user a reference item (a $2 bus ride that takes 40 minutes), and a sliding bar representing

the number of dollars (x) for the 10-minute taxi cost. As the user adjusts the slider, the

value of x starts with 0 and gradually increases on a continuous scale. The user is instructed

to place the slider at a point where they equally prefer a $2 bus ride and a taxi ride of x

dollars.2 The PAQ thus combines ordinal and cardinal elicitation in an intuitive fashion:

We obtain ordinal information by asking the user to make cognitive judgments in a relative

sense by comparing items, and cardinal information can be extracted from the location of

the slider. The ordinal reasoning endows the query with accuracy and efficiency, while the

cardinal output enables a more expressive response. Moreover, this cardinal output mitigates

miscalibration, because instead of asking the user to rate on a subjective and ambiguous
2The ordinal component is crucial in our proposed perceptual adjustment query— we provide a reference

item and instruct people to make a relational judgment of the target item compared to the reference item.
Hence, the perceptual adjustment query is distinct from sliding survey questions that elicit purely cardinal
responses.
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notion (i.e., preference), we provide the user a reference object (i.e., the $2 bus ride) to

anchor their rating scale.

This combination of high per-response information and low cognitive burden makes the

deployment of PAQs appealing in a variety of problem settings. For example:

• Learning human preferences. As illustrated in the taxi and bus example in Figure 3.1,

one can ask users to pinpoint the cost at which a taxi ride is equally preferred to the bus

ride. In a more complex setting, such as housing preferences, moving the slider can

change multiple attributes, such as price, square footage, maintenance fees, proximity

to employment, etc. User responses to PAQs yield information-dense statements about

how features jointly impact human preferences.

• Learning a model for color perception. Imagine a user with red-green color blindness,

the extent of which we wish to learn. We can present the user with an image of a red

square and a sequence of colors that slowly transitions from red to green, and ask

them to drag the slider until they perceive a difference in colors. In such a setting,

PAQs present users with context (the full sequence of colors and the reference color)

to help them indicate their color sensitivity: At what point can you start distinguishing

the two colors?

• Studying generative models. Imagine we wish to characterize how the semantic

characteristics of synthesized items (e.g., images) change along different directions

of a given generative model. By traversing a continuous path in the model’s latent

space and generating a corresponding item for each point, PAQs present users with a

sequence of items. Using an item at the beginning of the sequence as the reference

item, we ask users to mark the first item along the sequence that is semantically

different in a meaningful way. For example, to characterize how different directions

in the latent space impact breed for a model trained to synthesize images of dogs, we

ask users to mark the first image where the breed clearly changes.
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Beyond combining the strengths of cardinal and ordinal queries, PAQs have additional

advantages that are well illustrated with the example in Figure 3.1 (bottom). First, PAQs

provide users with the context of a specific (continuous) dimension along which items vary.

For example, consider a pairwise comparison between the reference item and the “yellow

apple ” selected in Figure 3.1. They have similar shapes, but different colors. If these

two items are shown to the user in isolation, the user lacks context to judge whether they

should be considered similar or dissimilar. In contrast, the full spectrum provided in PAQs

tells the user that the similarity judgment is apples vs. pears. The access to such context

improves self-consistency in user responses [28]. Second, PAQs provide “hard examples”

by design and thus enable effective learning. Consider Figure 3.1 (bottom): Items on the left

of the spectrum are apples (clearly similar to the reference), and items on the right are pears

(clearly dissimilar to the reference), and only a small subset of items in the middle appear

ambiguous. PAQs collect information precisely about “confusing” items in this ambiguous

region. On the other hand, if ordinal queries are constructed by selecting uniformly at

random from the items shown, an item in the ambiguous region will rarely be presented to

the user.

In this chapter, we apply the PAQ scheme in the framework of metric learning for human

perception. In this problem, items are represented by points in a (possibly high-dimensional)

space, and the goal is to learn a distance metric such that a smaller distance between a pair

of items means that they are semantically and perceptually closer, and vice versa. Figure 3.1

(bottom) presents a PAQ for collecting similarity data for metric learning, where the user is

instructed to place the slider at the precise point where the object appears to transition from

being similar to dissimilar.

To construct a sequence of images as shown in Figure 3.1 (bottom), one can traverse a

path in the latent space of a generative model — given a latent feature vector, the generative

model synthesizes a corresponding image. In other settings, such as the taxi example in

Figure 3.1 (top) or the housing preference task mentioned above, a sequence of items can be
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Figure 3.2: Simulation comparing performance of noiseless responses to PAQs and various
ordinal queries when applied to low-rank metric learning. Ranking-k denotes that k items
are ranked in terms of similarity to a reference item. For each query type, we plot the mean
and standard error of the mean (shaded regions, not visible) of the normalized estimation
error k⌃? � b⌃kF/k⌃?kF over 10 independent trials.

formed by gradually changing the value of interpretable features, such as price and square

footage.

Do PAQs improve upon ordinal queries? A simulation vignette. Consider the problem

of Mahalanobis metric learning, which forms the focus of this chapter. In this setting,

items are represented as points in the vector space Rd, which is in turn endowed with a

Mahalanobis metric parametrized by a symmetric positive semidefinite matrix ⌃? 2 Rd⇥d.

The (dis-)similarity of two items is determined by their distance under the metric: The larger

the (squared) distance kx � x0k2⌃? = (x � x0)>⌃?(x � x0) between two items x and x0

is, the more dissimilar the items are. We are particularly interested in the setting in which

⌃? is low-rank, which covers several important settings. For example, a user may make

preference judgements using a small number of interpretable features [1, 100]. For another

example, it has been shown that a small number of linear directions capture a vast majority

of semantic changes in the latent space of a popular generative model, StyleGAN2 [101].

Established approaches in metric learning use ordinal queries, such as pairwise compar-

isons (“Are items x and x0 similar?”) [102, 103, 104, 105], triplet comparisons [25] (“Which

of the two items x1 and x2 is closer to reference item x0?”), and ranking queries (“Given
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a reference item x0, rank the set of items x1, . . . ,xk in terms of similarity to x0”) [28].

In Figure 3.2, we simulate the performance of such queries in a toy metric learning setup

against the performance of PAQs.

In particular, we choose a random low-rank matrix ⌃? in dimension 50 with rank 10

(see Section B.1 for our precise construction, which resembles the setup of [106]) and use

the models of [25, 28] to produce standard pairwise, triplet, and ranking-k queries. We

also use state-of-the-art algorithms to estimate the low-rank metric from these types of

queries [25, 28]. In addition to these ordinal queries, we simulate PAQ responses under

the model presented in Section 3.3 and use our algorithm (see Section 3.4) to generate a

metric estimate. To simplify the example, all queries responses are generated in a noiseless

fashion—for example, the triplet comparison always returns the closer item to the reference.

We present our results in Figure 3.2, which illustrates a significant gap in information

richness between PAQs and a variety of ordinal queries. The number of PAQ responses

needed to attain a reasonable normalized error levels is dramatically lower than those of

typical ordinal queries. For example, to achieve a normalized error of 0.2, one needs at

minimum 1,000 of any of the ordinal queries but only approximately 600 PAQ responses.

Overall, Figure 3.2 quantitatively illustrates that PAQs can greatly improve upon the perfor-

mance of existing ordinal queries on metric learning. The rest of the chapter explores this

opportunity: It aims to make the deployment of PAQs theoretically grounded by designing

provable methodology for learning a low-rank metric from PAQ responses.

Our contributions and organization. In addition to introducing the perceptual adjustment

query (PAQ), we demonstrate its applicability to metric learning under a Mahalanobis metric.

We first present a mathematical formulation of this estimation problem in Section 3.3. We

then show that the sliding bar response can be viewed as an inverted measurement of the

metric matrix that we want to estimate, which allows us to restate our problem as that

of estimating a low-rank matrix from a specific type of trace measurement (Section 3.4).
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However, our PAQ formulation differs from classical matrix estimation due to two technical

challenges: (a) the sensing matrices and noise are correlated, and (b) the sensing matrices

are heavy-tailed. As a result, standard matrix estimation algorithms give rise to biased

estimators. We propose a query procedure and an estimator that overcome these two

challenges, and we prove statistical error bounds on the estimation error (Section 3.5). The

unconventional nature of the sensing model and estimator causes unexpected behaviors in

our error bounds; in Section 3.6, we present simulations verifying that these behaviors also

appear in practice.

Notation. For two real numbers a and b, let a ^ b = min{a, b} and a _ b = max{a, b}.

Given a vector x 2 Rd, denote kxk1 and kxk2 as the `1 and `2 norm, respectively. Denote

Sd�1 := {x 2 Rd : kxk2 = 1} to be the set of d-dimensional vectors with unit `2 norm.

Given a matrix A 2 Rd1⇥d2 , denote kAkF , kAk⇤, and kAkop as its Frobenius norm, nuclear

norm, and operator norm, respectively. We denote Sd⇥d = {A 2 Rd⇥d : A = A>} to be

the set of symmetric d⇥ d matrices. Denote A ⌫ 0 to mean that A is symmetric positive

semidefinite. For A ⌫ 0, define the (pseudo-) norm kxkA =
p
x>Ax. For matrices

A,B 2 Rd1⇥d2 , denote by hA,Bi = tr
�
A>B

�
the Frobenius inner product. For two

sequences indexed by x, we use the notation f(x) . g(x) to mean that there exists some

absolute positive constant c > 0, such that f(x)  c · g(x) for all x. We use the notation

f(x) & g(x) when g(x) . f(x).

3.2 Related work

We now discuss related work in metric learning, along with the statistical techniques we use

for our algorithm and analysis.

Metric learning. In metric learning [107], prior work considers using paired comparisons

(of the form “are these two items similar or dissimilar?”) [102, 103, 104, 105] and triplet

comparisons (of the form “which of the two items x1 and x2 is more similar to the reference
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item x0?”) [25]. The metric learning from triplets problem is generalized by [1] to consider

an unknown reference point (referred to as an “ideal point”) that captures different individual

preferences. Sample complexity guarantees for simultaneous estimation of a metric and

individual ideal points are established in [100]. Tuple queries [28] extend triplets to ranking

more than two items with respect to a reference item. The PAQ can be viewed as extending

this set of items to a continuous spectrum, which is natural when one uses a generative

model such as a GAN [43, 48]. However, the goal of tuple queries is to rank the items,

whereas in PAQ the ranking is provided by the feature space and we ask people to identify a

transition point (similar vs. dissimilar) in this ranking.

Statistical techniques. In our theoretical results, we apply techniques from the high-

dimensional statistics literature. Our theoretical formulation (presented in Section 3.4)

resembles the problem of low-rank matrix estimation from trace measurements (e.g., [108,

10, 109, 110, 111, 112]; see [113] for a more complete overview), and in particular, when the

sensing matrix is of rank one and random [114, 106, 115, 116, 117]. However, as discussed

in Section 3.4, our model results in two important departures from prior literature. In our

case, the sensing matrices are both heavy-tailed and correlated with the measurement noise,

and the latter issue results in estimation bias for standard matrix estimation procedures. In

addition, our heavy-tailed matrices violate the assumptions of much prior work that relies

on sub-Gaussian or sub-exponential assumptions on the sensing matrices. Prior work has

attempted to address the challenge of heavy tails with methods such as robust loss functions

[118, 119] or the “median-of-means” approach [120, 121, 122], which partitions the data,

constructs an estimator for each partition, and then forms one estimator based on some

robustness criteria. We draw particular inspiration from [123], which applies truncation to

control heavy-tailed behavior in a number of problem settings. However, in the low-rank

matrix estimation setting, the paper [123] only analyzes the case of heavy-tailed noise under

a sub-Gaussian design, meaning that their methodology and results are not applicable to our
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Figure 3.3: The perceptual adjustment query. Given a reference item x and a query vector
a, a continuous path of items is formed {x + �a : � 2 [0,1)}. Then, a user is asked to
pick the first item along this path that is dissimilar to the reference item, denoted by x+ �a.

problem setting.

3.3 Formal model

In this section, we present our model for the perceptual adjustment query (PAQ) in the

context of its application to metric learning.

3.3.1 Mahalanobis metric learning

We consider a d-dimensional feature space where each item is represented by a point in Rd.

The distance metric model for human similarity perception posits that there is a metric on Rd

that measures how dissimilar items are perceived to be. A recent line of work [1, 100] has

modeled the distance metric as a Mahalanobis metric. If ⌃? 2 Rd⇥d is a symmetric positive

semidefinite (PSD) matrix, the squared Mahalanobis distance with respect to ⌃? between

items x and x0 2 Rd is kx� x0k2⌃? := (x� x0)>⌃?(x� x0). The distance represents the

extent of dissimilarity between items x and x0: If we further have a perceptual boundary

value y > 0, this model posits that items x,x0 are perceived as similar if kx� x0k2⌃? < y

and dissimilar if kx� x0k2⌃? � y. We adopt a high-dimensional framework and, following

existing work [25, 100], assume that the matrix ⌃? is low-rank.

Note that if the goal is to predict whether two items are similar or dissimilar via
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computing the relation kx� x0k2⌃? ? y, then this problem is scale-invariant, in the sense

that two items are predicted as similar (or dissimilar) according to (⌃?
, y), if and only if

they are predicted as similar (or dissimilar) according to (cscale⌃?
, cscaley) for any scaling

factor cscale > 0. We are thus interested in finding the equivalence class of solutions

{(cscale⌃?
, cscaley) : cscale > 0}.

Remark 1 (Choice of y). Since the goal is to learn (dis-)similarity between items, one can

set the boundary value to be any positive scalar y, and estimate the matrix ⌃? corresponding

to this value of y. Indeed, our theoretical results proving error bounds on kb⌃�⌃?kF exhibit

a natural scale-equivariant property (see Section 3.5, Scale Equivariance).

3.3.2 The perceptual adjustment query (PAQ)

We assume that every point in our feature space Rd corresponds to some item. Recall from

Figure 3.1 that a PAQ collects similarity data between a pair of items, where a reference

item is fixed, and a spectrum of target items is generated from a one-dimensional path in

the feature space. Denote the reference item by x 2 Rd. The target items can be generated

by any path in Rd, but for simplicity, we consider straight lines. For any vector a 2 Rd,

we construct the line {x + �a : � 2 [0,1)}. We call this vector a the query vector. As

shown in Figure 3.3, the user moves the slider from left to right, and the value of � increases

proportionally to the distance traversed by the slider. Note that the value � is dimensionless.

The user is instructed to stop the slider at the transition point where the target item

transitions from being similar to dissimilar with the reference item. According to our model,

this transition point occurs when the ⌃?-Mahalanobis distance between the target item and

the reference item is y. The (noiseless) transition point, denoted by �?, satisfies the equation

y = kx� (x+ �?a)k2⌃? = �
2
?a

>⌃?a. (3.1)

Note that the ideal PAQ response �? does not depend on the specific reference item x but
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rather only on the query direction a and the (unknown) metric matrix ⌃?. When querying

users with PAQs, the practitioner has control over how the query vectors a are selected. We

discuss how to select a in Section 3.4.2.

3.3.3 Noise model

We model the noise in human responses as follows: In the PAQ response (Equation 3.1), we

replace the boundary value y by y+⌘, where ⌘ 2 R represents noise. Thus the user provides

a noisy response � whose value satisfies �2a>⌃?a = y + ⌘. Substituting in (Equation 3.1),

we have

�
2 = �

2
? +

⌘

a>⌃?a
. (3.2)

If a>⌃?a is large, then in the user interface Figure 3.1 (bottom), the semantic meaning of

the item changes rapidly as the user moves the slider along the direction a, and the slider

stops at a position that is close to the true transition point. On the other hand, if a>⌃?a is

small, then the image changes slowly as the user moves the slider. It is hard to distinguish

where exactly the transition occurs, so the slider ends up in a larger interval around the

transition point. Recall that the scaling � is proportional to the distance traversed by the

slider. This model (Equation 3.2) thus captures such variation in the noise level, where the

noise term ⌘
a>⌃?a is small when a>⌃?a is large, and vice versa.

3.4 Methodology

In this section, we formally present the statistical estimation problem for metric learning

from noisy PAQ data, and we develop our algorithm for estimating the true metric matrix

⌃?.
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3.4.1 Statistical estimation

Assume we collect N PAQ responses, using N query vectors {ai}Ni=1 that we select3. Denote

the noise associated with these queries by random variables ⌘1, . . . , ⌘N 2 R. We obtain

PAQ responses, denoted by �1, . . . , �N , that satisfy

�
2
i a

>
i ⌃

?ai = y + ⌘i, i = 1, . . . , N. (3.3)

We assume the noise variable ⌘ is independent4of the query a, has zero mean and variance

⌫
2
⌘ , and is bounded, with �y  ⌘  ⌘

" for some constant ⌘" � 0. Note that we must have

⌘ + y � 0 since �
2 � 0; in addition, we place an upper bound ⌘

" on the noise.

Given the query directions {ai}Ni=1 and the PAQ responses {�i}Ni=1, we want to estimate

the matrix ⌃?. We first rewrite our measurement model as follows: Recall that the matrix

inner product is denoted by hA,Bi := tr
�
A>B

�
for any two matrices A and B of

compatible dimension. Then from (Equation 3.3), we write

�
2 =

y + ⌘

a>⌃?a
. (3.4)

Plugging (Equation 3.4) once more into (Equation 3.3), we have

y + ⌘ = hAinv
,⌃?i,

where

Ainv := �
2aa> =

y + ⌘

a>⌃?a
aa>

. (3.5)

Hence, our problem resembles trace regression, and, in particular, low-rank matrix estimation
3In the sequel, we use the terms “responses”/“measurements” interchangeably for �, and the terms “query

vector”/“sensing vector” interchangeably for a.
4This could be relaxed by placing conditions on the conditional distributions of ⌘ given a (and even the

reference point x), but we omit this for simplicity.
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from rank-one measurements (because the matrix Ainv has rank 1) [114, 106, 115, 116]. We

call Ainv the sensing matrix, and a the sensing vector. Classical trace regression assumes

that we make (noisy) observations of the form y = hA,⌃?i+ ✏ where A is fixed before we

make the measurement; in our problem, the sensing matrix Ainv depends on our observed

response � and associated sensing vector a. Hence, the process of obtaining a PAQ response

can be viewed as an inversion of the standard trace measurement process. The inverse nature

of our problem makes estimator design more challenging, as we discuss in the following

section.

3.4.2 Algorithm

As our first attempt at a procedure to estimate ⌃?, we follow the literature [10, 116] and

consider randomly sampling i.i.d. vectors ai ⇠ N (0, Id). We then use standard least-squares

estimation of ⌃?. Since we expect ⌃? to be low-rank, we add nuclear-norm regularization

to promote low rank. In particular, we solve the following program:

min
⌃⌫0

1

N

NX

i=1

�
y � hAinv

i ,⌃i
�2

+ �Nk⌃k⇤, (3.6)

where �N > 0 is a regularization parameter. This is a convex semidefinite program and can

be solved with standard off-the-shelf solvers.

However, the inverted form of our measurement model creates two critical issues when

naı̈vely using (Equation 3.6):

• Bias of standard matrix estimators due to dependence. Note that the sensing ma-

trix (Equation 3.5) depends on the noise ⌘. Quantitatively, we have E
⇥
⌘Ainv

⇤
6= 0 (see

Section B.3.1). Standard trace regression analyses require that this quantity be zero,

typically assuming (at least) that ⌘ is zero-mean conditioned on the sensing matrix A.

The failure of this to hold in our case introduces a bias that does not decrease with the

sample size N .

45



• Heavy-tailed sensing matrix. The factor 1
a>⌃?a in Ainv (see (Equation 3.5)) makes Ainv

heavy-tailed in general. When a is Gaussian, the term 1
a>⌃?a is an inverse weighted chi-

square random variable, whose higher-order moments are infinite (and the number of finite

moments depends on the rank of ⌃?). This makes error analysis more difficult, as standard

analyses require the sensing matrix A to concentrate well (e.g., be sub-exponential).

To overcome these challenges, we make two key modifications to the procedure (Equation 3.6).

Step 1: Bias reduction via averaging. First, we want to mitigate the bias due to the

dependence between the sensing matrix Ainv and the noise ⌘. The bias term E
⇥
⌘Ainv

⇤
scales

proportionally to E [⌘(y + ⌘)] = E [⌘2]. Therefore, to reduce this bias in the least-squares

estimator (Equation 3.6), we need to reduce the noise variance. We reduce the effective

noise variance (and hence the bias) by averaging i.i.d. samples. Operationally, instead of

obtaining N measurements from N distinct sensing vectors {ai}Ni=1, we draw n sensing

vectors {ai}ni=1, and collect m measurements, denoted by {�(j)
i }mj=1 , corresponding to each

sensing vector ai. We refer to n as the number of (distinct) sensing vectors. To keep the

total number of measurements constant, we set n = N
m , where the value of m is specified

later. For each sensing vector ai, we compute the empirical mean of the m measurements:

�̄
2
i :=

1

m

mX

j=1

(�(j)
i )2 =

1

m

mX

j=1

y + ⌘
(j)
i

a>
i ⌃

?ai
=

y + ⌘̄i

a>
i ⌃

?ai
, (3.7)

where we define the average noise by ⌘̄i :=
1
m

mP
j=1

⌘
(j)
i . This averaging operation reduces

the effective noise variance from var(⌘i) = ⌫
2
⌘ to var(⌘̄i) =

⌫2⌘
m . If n is small, we may have

large error due to an insufficient number of query vectors ai. On the other hand, a small m

leads to a large bias. Therefore, we set the value of m carefully to balance these two effects.

This is studied theoretically in Section 3.5 and demonstrated empirically in Section 3.6.
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Step 2: Heavy tail mitigation via truncation. Next, we need to control the heavy-tailed

behavior introduced by the 1
a>⌃?a term in the sensing matrix Ainv. Note that the sample

averaging procedure (Equation 3.7) does not mitigate this problem. We adopt the approach

in [123] and truncate the observations. Specifically, we truncate the averaged measurements

�̄
2
i by ⌧ :

e�2
i := �̄

2
i ^ ⌧ =

y + ⌘̄i

a>
i ⌃

?ai
^ ⌧, (3.8)

where ⌧ > 0 is a truncation threshold that we specify later. We then construct the truncated

sensing matrices

eAi = e�2
i aia

>
i =

✓
y + ⌘̄i

a>
i ⌃

?ai
^ ⌧

◆
aia

>
i , i = 1, . . . , n. (3.9)

While truncation mitigates heavy-tailed behavior, it also introduces additional bias in our

estimate. The truncation threshold ⌧ therefore gives us another tradeoff, and in our analysis

to follow, we carefully set the value of ⌧ to balance the effects of heavy-tailedness and bias.

Final algorithm. Before presenting our final optimization program, we summarize our

assumptions and sensing model below.

Assumption 1 (Zero-mean, bounded noise). The observed noise values ⌘i are i.i.d copies of

the random variable ⌘, which is independent of the random sensing vector a. The random

noise satisfies

• Zero-mean: E [⌘] = 0

• Bounded: There exists a positive constant ⌘" such that �y  ⌘  ⌘
" with probability

1.

We choose the sensing vector distribution to be the standard multivariate normal distri-

bution and collect, average, and truncate N PAQ responses following Algorithm 1. This
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Algorithm 1 Inverted measurement sensing, averaging, and truncation.

Input: number of total measurements N , averaging parameter m (that divides N ), truncation
threshold ⌧ , measurement value y

1: Compute the number of sensing vectors n = N
m

2: for i = 1 to n do
3: Draw sensing vector ai from standard multivariate normal distribution
4: Obtain m PAQ measurements (�(1)

i )2, . . . , (�(m)
i )2 of the form

(�(j)
i )2 =

y + ⌘
(j)
i

a>
i ⌃

?ai
,

where ⌘
(j)
i is an i.i.d. copy of the random noise ⌘ for all i and j

5: end for
6: for i = 1 to n do
7: Bias elimination via averaging: compute averaged response

�̄
2
i =

1

m

mX

j=1

(�(j)
i )2.

8: Heavy tail mitigation via truncation: compute truncated response

e�2
i = �̄

2
i ^ ⌧.

9: end for
Output: truncated responses e�2

1 , . . . e�2
n

process yields n truncated responses e�2
1 , . . . e�2

n. We then use these truncated responses to

form the averaged and truncated matrices { eAi}ni=1, which we substitute into the original

least-squares problem (Equation 3.6). To estimate ⌃?, we solve

b⌃ 2 argmin
⌃⌫0

1

n

nX

i=1

⇣
y � h eAi,⌃i

⌘2
+ �nk⌃k⇤, (3.10)

where, again, �n is a regularization parameter that we specify later.

Practical considerations. In the averaging step, we collect m measurements for each

sensing vector ai. These measurements could be collected from m different users. Further-
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more, recall from Section 3.3.2 that the measurements do not depend on the reference item

x. As a result, one may also collect multiple responses from the same user by presenting

them the same query vector ai but with different reference items x. In addition, recall from

Section 3.3.1 that user responses are scale-invariant. Practitioners are hence free to set the

boundary y to be any positive value of their choice without loss of generality, and the noise

variance ⌫2
⌘ scales accordingly with y. The user interface does not depend on the value of y.

3.5 Theoretical results

We now present our main theoretical result, which is a finite-sample error bound for esti-

mating a low-rank metric from inverted measurements with the nuclear norm regularized

estimator (Equation 3.10). Our error bound is generally stated, and depends on the averaging

parameter m and the truncation threshold ⌧ .

Recall that ⌫2
⌘ denotes the variance of ⌘. We define the quantities y

" := y + ⌘
" and

µy = y + median(⌘). We further denote by �1 � · · · � �r > 0 the non-zero singular

values of ⌃?.

Theorem 1. Suppose ⌃? is rank r, with r > 8. Assume that we choose the sensing vector

distribution the be the standard multivariate normal distribution, that Assumption 1 holds on

the noise, and that we collect, average, and truncate measurements following Algorithm 1.

Further, assume that the truncation threshold ⌧ satisfies ⌧ � µy

tr(⌃?) . Then there are positive

constants c, C, C1, and C2, such that if the regularization parameter and the number of

sensing vectors satisfy

�n � C1

"
y
"

 
y
"

�rr

r
d

n
+

d

n
⌧ +

✓
y
"

�rr

◆2
1

⌧

!
+

1

�rr

⌫
2
⌘

m

#
and n � C2rd, (3.11)

then any solution b⌃ to the optimization program (Equation 3.10) satisfies

kb⌃�⌃?kF  C

✓
tr (⌃?)

µy

◆2 p
r�n (3.12)
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with probability at least 1� 4 exp (�d)� exp (�cn).

The proof of Theorem 1 is presented in Section 3.7. The two sources of bias discussed in

Section 3.4.2 appear in the expression (Equation 3.11) for the regularization parameter �n

(and consequently in the error bound (Equation 3.12)). The term scaling as 1/⌧ corresponds

to the bias induced by truncation, and decreases as the truncation gets milder (i.e., as the

threshold ⌧ gets larger). The term scaling as ⌫
2
⌘/m corresponds to the bias arising from

dependence between the noise and sensing matrix. As discussed in Section 3.4.2, in this

model, m-averaging results in a bias that scales like 1/m.

Given the dependence of the estimation error bound on the parameters m and ⌧ , we

carefully set these parameters to obtain a tight bound as a function of the number of total

measurements N = mn. These choices for m and ⌧ , along with the final estimation error,

are presented below in Corollary 1.

Corollary 1. Recall that N = mn. Assume that the conditions of Theorem 1 hold, and set

the values of the constants (c, C, C1, C2) according to Theorem 1. Suppose that the number

of total measurements satisfies

N �
⇢
2C

3/2
2

⌫
2
⌘

(y")2
r
3/2
d

�
_
(
C2rd

)
. (3.13)

Set the averaging parameter m and truncation threshold ⌧ to be

m =

&✓
⌫
2
⌘

(y")2

◆2/3✓
N

d

◆1/3
'

and ⌧ =
y
"

�rr

r
N

md
, (3.14)

and set �n equal to its lower bound in (Equation 3.11). With probability at least 1 �

4 exp(�d)� exp (�cN/m), we have:

(a) If ⌫2⌘
(y")2 >

q
d
N , then any solution b⌃ to the optimization program (Equation 3.10)
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satisfies

kb⌃�⌃?kF  C
0 �

2
1

�r

(y")4/3(⌫2
⌘)

1/3

µ2
y

r
3/2

✓
d

N

◆1/3

. (3.15)

(b) If ⌫2⌘
(y")2 

q
d
N , then any solution b⌃ to the optimization program (Equation 3.10)

satisfies

kb⌃�⌃?kF  C
0 �

2
1

�r

✓
y
"

µy

◆2

r
3/2

✓
d

N

◆1/2

. (3.16)

In both cases, C 0 = 3C · C1.

The proof of Corollary 1 is provided in Section 3.8. A few remarks are warranted about

our error bounds (Equation 3.15) and (Equation 3.16).

Error rates and noise regimes. Under the standard trace measurement model, it is known

that if the measurement matrices are i.i.d. according to some sub-Gaussian distribution and

the number of measurements satisfies N & rd, then nuclear norm regularized estimators

achieve an error that scales like
q

rd
N (e.g., [10, 109]). Such a result is also known to be

minimax optimal [109]. Allowing heavier-tailed assumptions on the sensing matrices,

such as sub-exponential [115, 11] or bounded fourth moment [123], typically results in

additional log d factors but does not impact the exponent 1/2 in the error rate. However, a

crucial assumption in these results is that E
⇥
⌘Ainv

⇤
= 0, and thus there is no bias due to

measurement noise. Our inverted measurement sensing matrix is not only heavy-tailed but

also leads to bias (see Lemma 1 in Section B.3.1). Nevertheless, we are able to reduce the

bias and trade it for variance, ensuring consistent estimation in all regimes.

In Corollary 1, there are two distinct cases for error rate which correspond to two

different noise regimes induced by the quantity ⌫2⌘
(y")2 , which captures the noise level in our

measurements. In particular, the two cases in Corollary 1 correspond to two regimes with
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distinct bias behavior:

(a) High-noise regime: In this setting, the bias due to measurement noise is non-negligible.

As a result, we employ averaging with large m, which results in the rate scaling as

(d/N)1/3.

(b) Low-noise regime: In this setting, the measurement noise bias is dominated by the

variance, and thus has negligible impact on the estimation error. As a result, we are

able to achieve a rate of order (d/N)1/2, which is consistent with established results

for low-rank matrix estimation.

Sample complexity. Since the degrees of freedom in a rank-r matrix of size d⇥ d is of

order rd, one expects that the minimum number of measurements to identify a rank-r matrix

is of order rd. This is reflected in Theorem 1, which assumes that the number of distinct

sensing vectors {ai} satisfies n & rd. In the high-noise regime, from (Equation 3.14) in

Corollary 1, we have that m scales like (N/d)1/3. Thus, the total number of measurements is

N = mn & (N/d)1/3 · rd & N
1/3
d

2/3
r, and hence N & r

3/2
d. Given that the rank is assumed

to be relatively small compared to the dimension, the extra factor of
p
r is a relatively small

price to pay to obtain consistent estimation. In the low-noise regime, it can be verified that

m = 1 in (Equation 3.14) due to the low-noise condition ⌫2⌘
(y")2 

q
d
N . No averaging is

needed, and we only require N = n & rd.

Dependence on rank. When compared to standard results, Corollary 1 differs in its

dependence on rank. First, the matrix ⌃? is assumed to have rank r > 8. This prevents the

term 1
a>⌃?a from making the sensing matrices so heavy-tailed that even truncation does not

help. We empirically show that the assumption of r > 8 is necessary in Section 3.6. Second,

there is an additional factor of r in our rate for both noise regimes. To interpret this, note that

if ⌃? has non-zero singular values in a fixed range, then E
⇥
a>⌃?a

⇤
= tr (⌃?) ⇡ r. Since

the “magnitude” of the sensing matrix Ainv is inversely proportional to a>⌃?a, increasing
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r decreases the magnitude of Ainv and thus also (for a fixed noise level) the signal-to-noise

ratio.

Scale equivariance As discussed in Section 3.3.1, the metric learning from PAQs prob-

lem aims to find an equivalence class {(cscale⌃, cscaley) : cscale > 0}, and the ground-truth

⌃? is defined with respect to a particular choice of y. Accordingly, our error bounds

are scale-equivariant: If we instead replaced y with cscaley, the bounds (Equation 3.15)

and (Equation 3.16) would scale linearly in cscale. This fact is precisely verified in Sec-

tion B.2 and relies on the fact that the noise also scales appropriately in cscale. As alluded to

in Remark 1, practitioners may simply set y to be any positive number to estimate a metric

that reflects item (dis-)similarity.

3.6 Numerical simulations

In this section, we provide numerical simulations investigating the effects of the various

problem and estimation parameters. For all results, we report the normalized estimation error

kb⌃�⌃?kF/k⌃?kF averaged over 20 trials. Shaded areas (sometimes not visible) represent

standard error of the mean. For all experiments, we follow [25] and generate the ground-truth

metric matrix as ⌃? = dp
rUU>, where U 2 Rd⇥r is a randomly generated matrix with or-

thonormal columns. The noise ⌘ is sampled from a uniform distribution on [�⌘
"
, ⌘

"] (where

⌘
"  y). We set the regularization parameter, truncation threshold, and averaging parameter

in a manner consistent with our theoretical results (see (Equation 3.11) and (Equation 3.14)),

cross-validating to choose the constant factors. We solve the optimization problem using

cvxpy [124, 125].

Effects of dimension and rank. Our first set of experiments characterizes the effects

of dimension d and matrix rank r. For all experiments, unless we are sweeping a specific

parameter, we set y = 200, d = 50, r = 15, and ⌘
" = 10. Figure 3.4a shows the performance

for varying values of d plotted against the normalized sample size N/d. For all dimensions
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(a) (b) (c)

Figure 3.4: Simulations quantifying the effect of dimension d, rank r, and averaging
parameter m on estimation error. Shaded areas correspond to standard error of the mean but
sometimes not visible.

d, the error decays to zero as the total number of measurements N increases. Furthermore,

the error curves are well-aligned when the sample size is normalized by d with fixed r,

empirically aligning with Corollary 1. Figure 3.4b shows the performance for varying

values of rank r. Recall that for our theoretical results we assume r > 8 to ensure that

the quadratic term a>⌃?a in the denominator of our sensing matrices does not lead to

excessively heavy-tailed behavior. When r > 8, the number of measurements required for

the same estimation error increases as the rank increases. A clear phase transition occurs

at r = 8. The error still decreases with N for r  8, but at a markedly slower rate than

when r > 8. This empirically demonstrates that when r  8, the sensing matrix tails are too

heavy to be mitigated by truncation.

Effect of averaging parameter m. (Equation 3.14) suggests that the averaging parameter

m should scale proportionally to (N/d)1/3. To test this, we set y = 200, d = 50, r = 9,

and ⌘
" = 200. We vary values of m for different choices of the (N, d) pair, as shown in

Figure 3.4c. The empirically optimal choice of m is observed to be the same when N/d is

fixed, regardless of the particular choices of N or d (the green and red curves overlap, and

the blue and orange curves overlap). Moreover, the optimal m is smaller when N/d = 400

compared to when N/d = 1000.
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3.7 Proof of Theorem 1

Recall that we assume we collect N measurements under the inverted measurements sensing

model presented in Algorithm 1 with standard Gaussian sensing vectors and bounded noise,

mean-zero noise (Assumption 1).

We first introduce a restricted strong convexity (RSC) condition that our proof relies

on. Since the matrix ⌃? is assumed to be symmetric positive semidefinite matrices and of

rank r, we follow [10] and consider a restricted set on which we analyze the behavior of the

sensing matrices eAi. We call this set the “error set”, defined by:

E =
n
U 2 Sd⇥d : kUk⇤  4

p
2rkUkF

o
, (3.17)

where recall that Sd⇥d denotes the set of symmetric d⇥d matrices. We say that our shrunken

sensing matrices { eAi}ni=1 satisfy a restricted strong convexity (RSC) condition over the

error set E , if there exists some positive constant  > 0 such that

1

n

nX

i=1

h eAi,Ui2 � kUk2F for all U 2 E . (3.18)

The following proposition shows that the estimation error, when the sensing matrices satisfy

the RSC condition and the regularization parameter is sufficiently large.

Proposition 2 ([123, Theorem 1] with q = 0). Suppose that ⌃? has rank r and the

shrunken sensing matrices satisfy the restricted strong convexity condition (Equation 3.18)

with positive constant  > 0. Then if the regularization parameter satisfies

�n � 2

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

, (3.19)
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any optimal solution b⌃ of the optimization program (Equation 3.10) satisfies

kb⌃�⌃?kF  32
p
r�n


.

This theorem is a special case of Theorem 1 in [123], which is in turn adapted from

Theorem 1 in [10] (see [10] or [123] for the proof). Proposition 2 is a deterministic and

nonasymptotic result and provides a roadmap for proving our desired upper bound. First, we

show that the operator norm (Equation 3.19) can be upper bounded with high probability,

allowing us to set the regularization parameter �n accordingly. Second, we show that the

RSC condition (Equation 3.18) is satisfied with high probability. We begin by bounding the

operator norm (Equation 3.19) in the following proposition.

Proposition 3. Let y" = y + ⌘
". Suppose that ⌃? has rank r, with r > 8. Then there exists

a positive absolute constant C1 such that

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

 C1

"
y
"
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"
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n
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n
⌧ +

✓
y
"

�rr

◆2
1

⌧

!
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1

�rr

⌫
2
⌘

m

#

(3.20)

with probability at least 1� 4 exp (�d).

The proof of Proposition 3 is provided in Section B.4. Next, we show that the RSC

condition (Equation 3.18) is satisfied with high probability, as is done in the following

proposition.

Proposition 4. Let µy be the median of y + ⌘̄. Suppose that the truncation threshold ⌧

satisfies ⌧ � µy

tr(⌃?) . Then there exist positive absolute constants L, c, and C such that if

the number of sensing vectors satisfy

n � Crd
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then we have

1

n

nX

i=1

h eAi,Ui2 � L

✓
µy

tr (⌃?)

◆2

kUk2F (3.21)

simultaneously for all matrices U 2 E with probability at least 1� exp(�cn), where E is

the error set defined in (Equation 3.17).

The proof of Proposition 4 is provided in Section B.5. We now utilize the results

of Proposition 2, Proposition 3 and Proposition 4 to derive our final error bound. By Propo-

sition 3, the operator norm (Equation 3.19) can be upper bounded with high probability. We

set the regularization parameter �n to satisfy

�n � C1

"
y
"
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�rr
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⌧ +

✓
y
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!
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�rr

⌫
2
⌘
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#
,

where C1 is the constant in Proposition 3. Furthermore, by Proposition 4, we have that

there exist universal constant C2 > 0 such that if the number of sensing vectors satisfies

n � C2rd, the RSC condition (Equation 3.18) holds for constant  = L

⇣
µy

tr(⌃?)

⌘2
with

high probability. Taking a union bound, we have that Proposition 3 and Proposition 4 hold

simultaneously with probability at least 1� 4 exp(�d)� exp(�cn). Invoking Proposition 2,

we have

kb⌃�⌃?kF  32
p
r · �n

L

⇣
µy

tr(⌃?)

⌘2

.
✓
tr (⌃?)

µy

◆2 p
r�n

with probability at least 1� 4 exp(�d)� exp(�cn), as desired.
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3.8 Proof of Corollary 1

We proceed by considering two cases. For each case, the proof consists of two steps. We

first verify that the choices of the averaging parameter m and truncation threshold ⌧ ,

m =

&"✓
⌫
2
⌘

(y")2

◆2
N

d

#1/3 '
and ⌧ =

y
"

�rr

r
N

md
, (3.22)

satisfy the assumptions of Theorem 1, namely n � C2rd and ⌧ � µy

tr(⌃?) . We then invoke

Theorem 1.

3.8.1 Case 1: high-noise regime

In this case, we have ⌫2⌘
(y")2 >

q
d
N , which means by setting m according to (Equation 3.22),

we have m � 2. As a result, the bound

&"✓
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(y")2

◆2
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d

#1/3 '
 2
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#1/3

(3.23)

holds in the high-noise regime.

Verifying the condition on n. Recall that n = N
m . We have

n =
N

m

(i)
� N
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= C2rd,
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where step (i) is true by plugging in the choice of m from (Equation 3.22) and applying

the bound (Equation 3.23), and step (ii) is true by substituting in the assumption N �

2C
3/2
2

⇣
⌫2⌘

(y")2

⌘2
r
3/2
d. Thus the condition n � C2rd of Theorem 1 is satisfied.

Verifying the condition on ⌧ . For the term
q

N
dm in the expression of ⌧ in (Equation 3.22),

note that, by the previous point, N
m = n & rd (with a constant that is greater than 1). Thus

q
N
dm �

p
r > 1. Therefore, to verify the condition ⌧ � µy

tr(⌃?) , it suffices to verify that

y
"

�rr
� µy

tr (⌃?)
. (3.24)

By definition, we have y
" � µy. Furthermore, since ⌃? is symmetric positive semidefinite,

its eigenvalues are all non-negative and are identical to its singular values, and hence

tr (⌃?) � �rr, verifying the condition (Equation 3.24).

Invoking Theorem 1. By setting �n to its lower bound in (Equation 3.11) and substituting

in n = N
m and our choice of ⌧ from (Equation 3.22), we have

�n = C1
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(3.25)

Substituting this expression of �n to the error bound (Equation 3.12), then substituting in

our choice of m from (Equation 3.22) to (Equation 3.25) and defining C
0 = 3C · C1, we

have

kb⌃�⌃?kF  C
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Using the fact that tr (⌃?)  �1r, we have
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as desired.

3.8.2 Case 2: low-noise regime

In this case, we have ⌫2⌘
(y")2 

q
d
N , which means by setting m according to Equation (Equation 3.22),

we have m = 1. As a result, no averaging occurs.

Verifying the condition on n. Because m = 1 in this case, we have that n = N . By

assumption, we have that N � C2rd, satisfying the condition n � C2rd in Theorem 1.

Verifying the condition on ⌧ . By the same analysis as in Case 1, we have that the condition

⌧ � µy

tr⌃? in Theorem 1.

Invoking Theorem 1. By setting �n to its lower bound in (Equation 3.11), substituting in

our choice of ⌧ from (Equation 3.22) and noting m = 1, we have

�n = C1
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�rr
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. (3.26)

We define C 0 = 3C · C1 and note that n = N under Case 2. Substituting this expression

of �n in (Equation 3.26) to the error bound (Equation 3.12), then using the fact that under

Case 2, the bound ⌫
2
⌘  (y")2

q
d
N holds, we have
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Using the fact that tr (⌃?)  �1r, we have
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as desired.
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3.9 Conclusion

We introduce the perceptual adjustment query, a cognitively lightweight way to obtain ex-

pressive human responses. We specifically investigate using PAQs for human perceptual

similarity learning. Learning models of human perception or preference has a range of

applications, including recommendation systems, interrogating generative models, and

quantifying perceptual conditions such as color blindness or hearing loss. We use a Ma-

halanobis distance-based model for human similarity perception and use PAQs to estimate

the unknown metric. This setup gives rise to a new inverted measurement scheme for

high-dimensional low-rank matrix estimation which violates commonly held assumptions

for existing estimators. We develop a two-stage estimator and provide corresponding sample

complexity guarantees.

This work lays the foundation for future work in two directions: (1) practical deployment

of PAQs and (2) theoretical characterization of learning from inverted measurements. One

important aspect of deploying PAQs in practice is how to select the most informative query

directions. While this work considers a random query direction scheme that is amenable

for theoretical analysis, targeted selection of query directions may reduce the number of

responses needed in practice. Conducting user studies to collect data from human responses

will also bring additional insights into how the theoretical guarantees translate into practice.

Along theoretical lines, one key direction is to characterize the optimal rate for this

problem by deriving information-theoretic lower bounds. It is possible that there exists a

fundamental trade-off between the variance and the bias that arises from the measurement

scheme; it is also possible that more sophisticated techniques are capable of overcoming

such bias.
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Part II

Circumventing human feedback
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CHAPTER 4

PERSONALIZING WITHOUT HUMAN FEEDBACK: LARGE LANGUAGE

MODEL AUGMENTED EXERCISE RETRIEVAL FOR PERSONALIZED

LANGUAGE LEARNING

In this chapter1, we study the cold-start phase of a recommender system, where minimal

human feedback is available, and utilize the generative abilities of large language models in

lieu of collecting human relevance labels. Specifically, we study the problem of zero-shot

exercise retrieval in the context of online language learning, to give learners the ability

to explicitly request personalized exercises via natural language. Using real-world data

collected from language learners, we observe that vector similarity approaches poorly capture

the relationship between exercise content and the language that learners use to express what

they want to learn. This semantic gap between queries and content dramatically reduces

the effectiveness of general-purpose retrieval models pretrained on large scale information

retrieval datasets like MS MARCO [126]. We leverage the generative capabilities of large

language models to bridge the gap by synthesizing hypothetical exercises based on the

learner’s input, which are then used to search for relevant exercises. Our approach, which

we call mHyER, overcomes three challenges: (1) lack of relevance labels for training, (2)

unrestricted learner input content, and (3) low semantic similarity between input and retrieval

candidates. mHyER outperforms several strong baselines on two novel benchmarks created

from crowdsourced data and publicly available data.

4.1 Introduction

Modern personalized education systems typically leverage the power of machine learning

models to estimate user skill levels [127] and adaptively serve exercises to learners [128,
1The work in this chapter appears in [3]
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129, 130]. Adaptivity, while a critical part of any personalized education system, is a passive

form of personalization from the learner’s point of view: While exercises are tailored to an

estimate of the learner’s skill level, this customization occurs behind the scenes, with no

opportunity for learners to take initiative in shaping the learning process. In this chapter, we

study a complementary form of learner initiated personalization in the context of online

language learning. In particular, learners are given the ability to explicitly request learning

content from an education system, which returns relevant exercises from a fixed catalog for

the learner to do.

This type of learner initiated personalization can be viewed as a form of self-directed

learning, where learners take initiative over the learning process. Self-directed learning has

been shown to increase learner performance across multiple topics [131, 132, 133, 134],

improve learner motivation [135], and create more cohesive learner environments [136].

Online language learning is a natural setting for self-directed learning, as people learn lan-

guages for very personal reasons: Some learn for fun, while others have specific goals, such

as preparing for an international trip or developing language skills for business. Different

reasons for learning lead to different needs for exercise content: Someone learning to write

in a business setting may want extra practice with grammar or politeness, whereas the learner

learning for a vacation may want exercises about hotels or transportation. Beyond highly

personalized motivations for learning, online language learners do not have immediate

access to instructors who can plan learning material to target weaknesses. As such, there is

an inherent need for online language learners to have some degree of self-direction in order

to get the most out of their learning experience.

With the goal of allowing language learners to tailor an online learning experience

to their own needs, we formalize the task of exercise retrieval for learner directed

language learning and evaluate machine learning models for this task. The goal of this

task (Figure 4.1) is to retrieve relevant exercises from a set of existing exercises based on

a learner’s input. In this setting, collecting relevance labels (i.e., pairs of learner inputs
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and relevant exercises) is particularly challenging, as learners will typically be presented

with only a small number of exercises for any given input. As a result, we consider the

zero-shot setting, where we do not have access to relevance labels for training. While many

off-the-shelf models exist for text-based retrieval, we show that direct similarity search

(i.e., retrieving exercises that are the most similar to the user input in the representation

space) with these models suffers from a semantic similarity gap between how users describe

their learning objectives and exercise content. To overcome this gap, we leverage structure

inherent to exercises and the generative capabilities of large language models. Specifically,

we make the following contributions.

• We propose the new task of exercise retrieval for learner directed language learning in

Section 4.3.1 and discuss how learner inputs give rise to a fundamental challenge in

this task.

• We present our zero-shot retrieval approach, mHyER, in Section 4.4, and illustrate

how augmenting retrieval with LLMs helps overcome the pitfalls of direct similarity

search.

• With no existing benchmarks for this task, we create two novel benchmarks in exercise

retrieval with both crowd-sourced data from learners of a popular language learning

app and publicly available Tatoeba data. We evaluate our method against several

strong dense retrieval baselines in Section 4.5 and empirically show that mHyER

outperforms relevant baselines by a significant margin.

4.2 Related work

Exercise retrieval is naturally connected to the broad field of information retrieval, and in

particular, dense retrieval [137, 138]. Dense retrieval focuses on retrieving documents based

on similarity measured in a learned representation space. Zero-shot retrieval, or retrieval

without training on task-specific relevance information, is of particular relevance to our
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Figure 4.1: Exercise retrieval for learner directed language learning and our proposed
solution, multilingual Hypothetical Exercise Retriever (mHyER). At a high level, learners
are allowed to provide any natural language input, and the goal is to retrieve exercises
relevant to that input. Our method utilizes large language models to do zero-shot retrieval.

task. Such methods typically rely on a supervised pretraining stage [139, 140, 141], where

models are trained on large scale retrieval datasets, such as MS MARCO [126]. However,

such supervised pretraining ultimately depends on the existence of suitable labeled datasets,

which are not always readily available [142]. The rise of large language models (LLMs)

with strong zero/few-shot performance in new domains has resulted in a line of research

integrating LLMs into the retrieval pipeline. Such approaches typically rely on some

combination of specialized prompting and synthesizing retrieval datasets to retrain retrieval

models [143, 144, 145, 146]. Our approach takes particular inspiration from HyDE [147],

which utilizes a LLM to synthesize a hypothetical document, which is used then used with a

pretrained encoder to retrieve documents via nearest neighbors.

A fundamental step in any retrieval method is the representation space used for similarity

comparisons. For the task of exercises retrieval, we focus on learning sentence embeddings,

where pretrained language models such as BERT [148] or RoBERTa [149] serve as strong

foundations. Contrastively learning sentence representations, which leverage techniques

used in the image domain [150, 151], has become especially popular. The goal of contrastive

learning is to learn a representation space where similar items (“positive pairs”) are pulled

close together while dissimilar items (“negative pairs”) are pulled far apart in an unsupervised

manner. In the image domain, positive pairs are formed by applying data augmentation,

such as cropping or rotating an image. Such techniques are not directly transferable to
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natural language, resulting in a long line of methods [142, 152, 153, 154, 155] studying

contrastive sentence embeddings. Of particular interest to the language learning setting

is multilingual contrastive learning [156], where positive pairs can be taken as the same

sentence in two different languages. In all, mHyER can be viewed as a combination of

multilingual contrastive learning [156] and HyDE [147].

Personalized education systems often gauge a learner’s skill level via Knowledge Trac-

ing [127] in order to tailor exercise difficulty level. As a result, a variety of contemporary

machine learning methods [157, 158, 159, 160, 161, 162] have been developed to track

learner skill level from historical data. Such methods demonstrate strong empirical success

and thus have been leveraged to adaptively recommend exercises to learners [128, 129] or

even generate new exercises based on skill level [130]. This adaptivity can be viewed as a

complementary piece to the problem of exercise retrieval directed language learning that

we study in this chapter: learner initiated personalization can leverage existing tools from

adaptivity to ensure exercises are both relevant and at the right skill level. On the other hand,

adaptive systems can benefit from explicit learner direction. For example, we can view the

learner input of “past tense verbs” as the learner explicitly saying they are not comfortable

with past tense verbs, and use this information in skill estimation.

4.3 Problem setup

The goal of exercise retrieval for learner directed language learning is to retrieve relevant

exercises for a learner given a text input from the learner describing what they want to

learn. In particular, we assume that learner is taking a language learning course, which

consists of two languages: the “first language” (i.e., a language they already know) and

the “second language” (i.e., the language they are learning), which we refer to as L1 and

L2, respectively.2 The learner completes exercises, which are drawn from a fixed set of N

exercises E = {e1, . . . , eN} that are at an appropriate level for the learner. We can view
2These labels are an imprecise shorthand; L1 need not be the learner’s first or native language, and L2 may

be a third language or beyond.
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this set of N exercises as samples from an unknown exercise distribution, which captures

characteristics (style, length, content, etc) of exercises. For simplicity, we limit our attention

to translation exercises, in which a learner translates an L1 sentence e
(L1)
i to the L2, with

one correct L2 answer e(L2)i available as an example of a correct translation. The learner

provides some input t, and our objective is to retrieve the K (unique) exercises that are the

most relevant based on input t in a zero-shot manner. That is, without using any labeled

relevance data for training, we want to retrieve K unique exercises e?1, . . . , e?K that maximize

probability p that an exercise is relevant conditioned on learner input t:

e
?
1, . . . , e

?
K = argmax

e1,...eK2E
ei 6=ej 8i,j, i 6=j

KY

i=1

p(ei|T = t). (4.1)

4.3.1 Learner inputs.

The core of the personalized experience in this problem setting is allowing learners to

provide an input describing what they want to learn with no restrictions on input content,

resulting in large number of potential input types. For example:

• Topics: Learners can request exercises that teach vocabulary relevant to a particular

topic. Inputs such as “words about animals” or “countries” are such examples.

• Grammar: Learners can request exercises teaching grammatical concepts, such as

“non-present tenses” or “irregular plurals”.

• Culture: Learners can request to review culture-specific aspects of language, such as

idioms, slang, or region-specific quirks. For example, a learner learning Spanish may

want to learn about “voseo”, a region-specific grammatical concept in South America.

• Learning process: Learners can request exercises that help with particular parts of

the process of learning a language, such as “words that are hard to spell” or “sentences

for first-year students”.
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Figure 4.2: mHyER consists of two stages. Contrastive finetuning (left) is employed as a
training stage to optimize our semantic similarity space for multilingual exercises. Then at
retrieval time (right), a large language model is employed to synthesize hypothetical retrieval
candidates. These retrieval candidates are then used in direct similarity search to retrieve
exercises.

Learner inputs of these types result in what we call a referential similarity gap: Under

modern text-based retrieval models, how learners express their learning objectives (i.e., the

learner input t) is not considered similar to what it is referring to, i.e., the content of the

exercises e(L1) and e
(L2). We explore this gap in greater detail in Section 4.4.3.

4.4 Method

In this section, we present multilingual Hypothetical Exercise Retriever (mHyER), our

zero-shot exercise retrieval framework, and show that it overcomes the pitfall of direct

similarity search in learned representation spaces.

4.4.1 Baseline: direct search with similarity spaces.

The backbone of text-based retrieval is a vector space representation of text that reflects

some notion of similarity between different pieces of text. Forming these representation

spaces remains a core part of text-based retrieval, with early methods such as BM25 [163]

formed representations via word frequency. Such methods struggle to generalize as their

representation spaces are formed based on counting exact or near text matches. To improve
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generalization, contemporary methods for text-based retrieval typically train a model f✓

(parametrized by ✓) that maps natural language inputs (from the space of all text inputs T )

to some d-dimensional vector space: f✓ : T ! Rd. Such models are referred to as encoders,

and learn representations of text called embeddings. That is, if t 2 T is some text, then f✓(t)

is its embedding representation. Because exercises are typically short sentences or sentence

fragments, we focus on encoders specifically geared towards learning sentence embeddings

in this work.

Harnessing the vast availability of text data, contemporary encoders are typically neural

networks trained such that texts with similar content are more similar in the representation

space under some measure, like cosine similarity. That is, if t1, t2 2 T are similar in

content, then sim(f✓(t1), f✓(t2)) is large (and positive). This similarity space suggests a

natural approach for retrieving exercises: Pass each exercise ei through the model f✓ to

obtain its embedding representation f✓(ei).3 Then, when a learner provides an input t,

pass t through the model to obtain f✓(t) and return the K exercises with largest cosine

similarity sim(f✓(ei), f✓(t)). As we see in Section 4.4.3, direct similarity search often

retrieves sentences featuring “language about language”, which are often irrelevant to the

learner’s input. This leads us to leverage the generative abilities of LLMs, as we discuss

next.

4.4.2 mHyER: augmenting direct search with generative capabilities.

If large quantities of relevance data were available, we could train a model to approximate

the relevance probability in (Equation 4.1) by learning a representation space where learner

inputs and relevant exercises are considered similar and then performing direct search.

However, input relevance data is unlikely to be available at the scale necessary to train such

a model. Instead, we propose mHyER, visualized in Figure 4.2, which after a multilingual

contrastive training stage, retrieves exercises in a two-step manner. First, we sample a set of

3We slightly abuse notation here and write f✓(ei) to mean either f✓(e
(L1)
i ) or f✓(e

(L2)
i ). The choice to

compare against the representation of the L1 or L2 sentence is explored in Section 4.5.

70



Figure 4.3: TSNE visualization of exercise, learner input, and GPT-4-synthesized retrieval
candidate representations in the representation space of a trained mBERT encoder (left).
Learner inputs concentrate in the language about language region (top right), making direct
similarity search sub-optimal. Retrieval candidates bridge the referential similarity gap
between learner inputs and exercise text and are close in similarity to exercises that meet the
learner’s specifications (bottom right).

Nc hypothetical exercises from the exercise distribution conditioned on the learner input.

We call these sampled exercises our retrieval candidates. In principle, we do not have access

to this exact distribution, but we can efficiently approximate sampling via LLM. Second, we

use the retrieval candidates to perform similarity search via K-nearest neighbors. mHyER

is inspired by two complementary methods: the multilingual contrastive learning approach

of [156], and the HyDE retrieval method of [147]. We now discuss both the training and

retrieval stages in greater detail.

Stage 1: Learning a multilingual similarity space. While we operate in a setting where

no explicit learner relevance data is provided, the multilingual nature of our exercises implies

that a certain structure should exist in our representation space. Namely, the sentence e
(L1)
i

in L1 should be similar to its translation e
(L2)
i in L2. To ensure this structure is reflected in

our representation space, we take inspiration from [156] and utilize multilingual contrastive

learning, an unsupervised approach that aims to learn a representation where similar items

(called positive pairs) are closer together and dissimilar items (called negative pairs) are far
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apart. For exercise ei, the contrastive loss Li with a mini-batch of NB sentence pairs is

Li = � log
exp

⇣
sim

⇣
f✓(e

(L1)
i ), f✓(e

(L2)
i )

⌘
/⌧

⌘

PNB

j=1 exp
⇣

sim
⇣
f✓(e

(L1)
i ), f✓(e

(L2)
j )

⌘
/⌧

⌘ , (4.2)

where ⌧ is the user-set temperature parameter and sim (·, ·) is the cosine similarity:

sim (f✓(t1), f✓(t2)) =
hf✓(t1)f✓(t2)i

kf✓(t1)k2kf✓(t2)k2
. (4.3)

In this work, rather than train a sentence encoder from scratch, we follow the commonly

accepted practice of initializing our encoder with existing BERT-based checkpoints and

contrastively finetuning these checkpoints on exercise data.

Stage 2: Sampling retrieval candidates and exercise retrieval. A core component of

mHyER is sampling from the exercise distribution conditioned on the learner input. While

we cannot sample directly from this distribution, we can approximate sampling with a LLM.

In particular, we prompt the LLM with a fixed a description of the exercise distribution

and instruct the LLM to synthesize hypothetical exercises based on this description and

based on a learner’s input. Crucially, we can synthesize exercises without requiring any

labeled examples, i.e., we do not embed examples of inputs and relevant exercises in the

prompt. To retrieve exercises, the LLM synthesizes Kh hypothetical exercises, which

we denote ẽ1, . . . , ẽKh
. We then encode these hypothetical exercises via f✓ to obtain Kh

vectors f✓(ẽ1), . . . , f✓(ẽKh
). To retrieve exercises, we retrieve the K exercises that have the

highest similarity score compared to the average of the Kh vectors: 1
Kh

PKh
i=1 f✓(ẽi). We use

GPT-4 [39] in this work, but in practice, any LLM of sufficient capacity can be used.
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4.4.3 Bridging the referential similarity gap with mHyER.

In an effort to better understand the task of retrieving exercises from learner inputs, we

crowdsourced a small dataset of learner inputs from users of Duolingo, a popular language

learning app. We then contrastively finetune mBERT with roughly 40,000 real exercises from

the app, spanning 4 different language courses. To get a sense of how contrastively learned

similarity spaces reflect learner inputs and exercise text, we visualize our collected data,

along with a subsample of the exercises, via TSNE in Figure 4.3. This visualization reveals

a fundamental referential similarity gap between learner inputs and exercise text:

How learners describe what they want to learn occupies a distinct part of the representation

space, characterized by explicit use of words or phrases about language (e.g., “verbs”, “past

tense”, “adjectives”). We refer to this region as the “language about language” region. As

a result, direct similarity search yields exercises that similarly contain words explicitly

about language. As shown in Figure 4.3, the input “past tense verbs” is most similar

to exercises about language (e.g., “I explained the new words to him”). Figure 4.3 also

highlights how synthesizing retrieval candidates helps bridge this referential similarity

gap by “translating” the learner’s input (which is typically expressed in “language about

language”) to a hypothetical in-distribution exercise whose content satisfies the learner input.

We provide concrete examples of learner inputs and synthesized retrieval candidates in

Table 4.1.

4.5 Datasets and experimental results

In this section, we first give an overview of two novel datasets specifically for the task of

learner directed language learning. We then compare mHyER against a variety of baselines

on these datasets.

73



Table 4.1: Examples of collected learner inputs and retrieval candidates synthesized based
on the learner input via GPT-4. For a variety of input types, GPT-4 is able to bridge the
referential similarity gap by synthesizing text that closely resembles real exercise text while
incorporating the concept that the learner wants to learn.

Input Synthesized retrieval candidates

Past tense
They went to the concert last night.
Did you finish your project on time?
We didn’t have any coffee this morning.

She cooked a delicious meal for us.
He had never seen such a beautiful sunset.
Were they able to solve the problem?

Future tense
She will be moving to France next year.
I won’t attend the party tonight.
When will you finish the project?

They’ll be studying for the exam tomorrow.
In five years, I’ll have my own business.
We’re going to plant a garden this summer.

Present
progressive
verbs

Are you studying for the test?
She’s preparing dinner for tonight.
They’re practicing their dance routine.

He’s not listening to the lecture.
I’m writing a letter to my friend.
The cat is chasing its tail.

Idiomatic
syntax

It’s raining cats and dogs!
Don’t put all your eggs in one basket.
He’s feeling under the weather.

She has a heart of gold.
I’m on cloud nine.
Keep your chin up!

How to order
food at a
restaurant

Could I see the menu, please?
I’d like to order the grilled salmon.
Does this dish contain any nuts?

May I have a glass of water?
Can I substitute fries for a salad?
Are there any vegetarian options?

4.5.1 Datasets

Duolingo Relevance (DuoRD) Dataset. To evaluate our method, we collected a small

scale dataset of 61 learner inputs from learners of Duolingo, a popular language learning

app. For each input, we asked the learner to rate 15 exercises as relevant or irrelevant to their

input, resulting in 915 total exercises rated. Exercises were sourced a pool of approximately

40,000 sentence pairs across four distinct courses. To ensure that the dataset was not skewed

too heavily towards relevant or irrelevant responses, we utilize a sampling approach. Using

mHyER, we retrieved the top 555 exercises in terms of similarity. To form the set of 15

exercises for the learner to rate, we select the top 5 scoring exercises deterministically (Tier

1). From the next 50 highest scoring exercises, we randomly select 5 exercises uniformly at

random without replacement (Tier 2). We repeat this sampling again, randomly drawing 5

exercises from the remaining 500 exercises (Tier 3). We observe that 64% of exercises from

Tier 1 were rated as relevant, 50% from Tier 2, and 34% from Tier 3, resulting in 49% of all
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exercises rated as relevant.

Tatoeba Tags dataset. To test our method on a larger scale, we construct a retrieval dataset

from Tatoeba, a public database of sentences and their translations. We begin by noting that

when sentences are uploaded to Tatoeba, they are often tagged by grammatical concepts,

language specific concepts, or topics. For example, the sentence “The brown bear is an

omnivore” is tagged with “animals” and the sentence “That way I kill two birds with one

stone” is tagged with “idiomatic expression”. We treat each of these tags as a learner input,

and deem an exercise relevant if it has been tagged accordingly. While per sentence tags are

not necessarily exhaustive, they provide useful signal for evaluating retrieval approaches

with typical retrieval metrics as well as binary classification metrics, as we discuss in the

Section 4.5.2. We form 3 benchmarks for evaluation, collectively referred to as the Tatoeba

Tags dataset:

• English benchmark: only English sentences with 139 tags and 89,392 sentences.

• Spanish from English benchmark: Spanish-English sentence pairs with 114 tags in

Spanish and 49,258 pairs.

• English from Spanish benchmark: Spanish-English sentence pairs with 108 tags in

Spanish and 46,837 pairs.

To form the benchmarks, we collect all tags corresponding to the benchmark, filter

out tags and sentences containing profanity, merge similar tags together, and then perform

benchmark specific language and content processing. We then keep only the tags with more

than 20 sentences and download the corresponding sentences. The benchmark specific

processing is done to better align the benchmark with how learners would interact with

real-world language learning courses. Specifically, we perform both language and content

processing. For language processing, we translate all tags (which appear in a variety of
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languages) to the L1. This is done to emulate the learning process: we use tags as a stand-in

for learner inputs, which are likely to be the learner’s L1. For content processing, we remove

tags that do not make sense in the context of a particular learning direction. For example, a

Spanish speaker learning English would not input “voseo” (a Spanish grammatical concept),

nor would an English speaker learning Spanish input “British English”.

4.5.2 Evaluation procedure and metrics

For the DuoRD dataset, we treat the 915 exercises that have been rated for some learner

input as the exercise set. Because each of the 915 exercises was not assigned a relevance

rating for every learner inputs, we cannot use typical information retrieval metrics such as

Recall or Precision. As a result, we treat evaluation on this dataset as a binary classification

problem, where the goal is to predict whether an exercise is relevant or irrelevant. To

evaluate methods, we use area under the receiver operating characteristic curve (AUC) and

accuracy. To compute AUC, for each retrieved exercise, we compute a score equal to the

similarity measure between the retrieval candidate and all exercises. We then aggregate

relevance labels and scores across all learner inputs to define the ROC curve. To compute

accuracy, we compute the scores as in AUC, and set a threshold such that any exercise above

the threshold is deemed relevant and vice versa. Because the similarity score ranges between

-1 and 1, we set the threshold by sweeping over [�1, 1) in increments of 0.1. We then report

the highest accuracy among all thresholds in the sweep.

For the Tatoeba Tags dataset, because we have a notion of relevance, as indicated by

the presence of a tag, we utilize Precision@K, which is a common metric in information

retrieval that reports the fraction of the K retrieved exercises that are relevant. To compute

Precision@K, we retrieve K sentences per learner input (i.e., tag) and record the fraction

of the K retrieved sentences tagged with the learner input tag. Because the tagging of

Tatoeba sentences is not exhaustive, the absolute values of reported Precision@K may

be low, but relative performance still indicates how methods would perform if tagging
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was comprehensive. In light of this, we again follow the evaluation approach of the

DuoRD dataset and report AUC.

When performing evaluation in both datasets, we can retrieve exercises in two distinct

ways. We can synthesize retrieval candidates in the L1 and perform similarity search on

the L1 exercise texts. Alternatively, we can synthesize retrieval candidates in the L2 and

perform similarity search on the L2 exercise texts (example translations). As a result, we

report AUC, accuracy, and precision@K in both the L1 and L2 setting.

4.5.3 Baselines

For both the DuoRD dataset and Tatoeba tags dataset, we evaluate mHyER against direct

similarity search using BERT and mBERT [148], as well as the following BERT-based

models: Contriever, mContriever [142], and SimCSE [152]. In particular, we use the BERT

base (110 million parameters) variant of each of the above methods. These methods achieve

strong unsupervised performance in a variety of retrieval and semantic text similarity tasks.

BERT and mBERT were trained in a self-supervised manner by using masked language

modeling and next sentence prediction objectives, with the only difference being the training

data (only English for BERT and a multilingual corpus for mBERT).

Contriever and mContriever propose two new approaches in contrastively tuning BERT:

(1) utilizing an inverse-cloze task and independent cropping as means of forming positive

pairs and (2) utilizing a Momentum encoder as described in [142] to ensure better repre-

sentation of negative items. Contriever is initialized with BERT and trained on English

CCNet [164] and Wikipedia data, whereas mContriever was initialized with mBERT and

trained on multiple languages in CCNet. We also consider supervised variants of Contriever

and mContriever, which are finetuned on the MS MARCO [126], a large scale retrieval

dataset. SimCSE uses dropout to create synthetic positive pairs for the contrastive loss by

passing the same sentence through the encoder with different random dropout parameters.

Starting with BERT, SimCSE is trained on Wikipedia data.
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Table 4.2: Examples of exercises retrieved with direct similarity search and mHyER for
the same input on the Tatoeba Tags English Benchmark. Direct similarity search is not
capable of bridging the fundamental referential similarity gap between learner inputs and
exercise content, as illustrated by “Subject verb agreement”, “Second person”, and “Collo-
quial” inputs. In settings where learners ask about specific topics, direct similarity search
returns exercises that most literally match the learner input, as shown with the “Preference”,
“Cooking” and “Sports” inputs. On the other hand, mHyER retrieves exercises well aligned
with the learner input.

Input Direct similarity search mHyER

Subject verb
agreement

Correct the underlined words
That’s a transitive verb
It’s a transitive verb

The dogs are in the garden
They grow flowers in the garden
The children are playing in the garden

Second person

It’s secondhand

It is secondhand

Next person please

Are you sure you want me to help
you with your homework?

I’m assuming you could speed
through your testimony...

Will you please check to see if
my order has been dealt with?

Colloquial
Be punctual
Speaking
Talk is cheap

You drive me round the bend
You’re laying it on a bit thick
You’re joshing me

Preference

Make your choice

Compromise
Make a choice

Which do you like better,
Mexican food or Chinese food?

Which sweet do you prefer?
Which do you better, pizza or tacos?

Cooking
My hobby is cooking
Eat and drink
Do the laundry

Pour melted butter over the popcorn
Add the chives and season the salad
Will you warm up the soup?

Sports

I like playing sports

I love sports

I like sports

One must practice every day in order
to become a worldclass athlete

Which do you like better
skating or skiing?

Which do you like better
cycling or jogging?
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Figure 4.4: Length of the top 3 retrieved exercise sentences, measured in number of
characters, for direct similarity search and mHyER. Exercises retrieved via direct similarity
search are inherently biased in length, with a majority of exercises being relatively short.
Using mHyER results in exercises of more varied length. This variation in length aligns
well with the global distribution of exercises, showing that mHyER effectively translates
learner inputs to the in-distribution exercises.

4.5.4 Direct similarity search vs. mHyER: A qualitative case study

Before we present our full experimental results, we first present examples of inputs and

retrieved sentences on the English benchmark of the Tatoeba Tags dataset. To qualitatively

gauge the difference between direct similarity search and mHyER, we provide examples

of retrieved exercises for a small number of inputs in Table 4.2. We present the top three

retrieved exercises measured in terms of similarity score for both direct similarity search

and mHyER, using mBERT finetuned on Tatoeba data as our similarity space. The input

“Subject verb agreement” highlights the “language about language” phenomena: Instead of

retrieving exercises containing correct subject verb agreement, direct similarity retrieves

exercises in the “language about language” part of the similarity space. These exercises

contain words such as “words” and “verb”. On the other hand, mHyER is capable of

bridging the gap between input and exercises, retrieving exercises that focus on ensuring

sentences with plural objects have the right verb form. The “Preference” input illustrates an

example of a nebulous input, as the learner wants exercises that have to do with expressing
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Table 4.3: Evaluation results on the DuoRD dataset. mHyER[model] indicates that contrastive
finetuning was employed with [model] as the initial checkpoint. +DuoRD dataset denotes
that the DuoRD dataset was used for contrastive finetuning. In all cases, mHyER outper-
forms relevant baselines dramatically.

AUC
L1

AUC
L2

Accuracy
at threshold

L1

Accuracy
at threshold

L2
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g

BERT 0.458 0.421 0.491 @ -1.0 0.507 @ 0.9
mBERT 0.485 0.471 0.491 @ -1.0 0.491 @ -1.0
Contriever 0.565 0.586 0.557 @ 0.4 0.540 @ 0.3
mContriever 0.497 0.499 0.548 @ 0.6 0.523 @ 0.5
SimCSE 0.579 0.536 0.564 @ 0.5 0.523 @ 0.4
mHyERmBERT

+DuoRD dataset
0.679 0.669 0.631 @ 0.5 0.605 @ 0.5

mHyERmContriever
+DuoRD dataset

0.680 0.678 0.635 @ 0.3 0.624 @ 0.3

Su
pe

rv
is

ed
pr

et
ra

in
in

g

Contriever-sup 0.609 0.605 0.579 @ 0.3 0.581 @ 0.2
mContriever-sup 0.558 0.543 0.541 @ 0.3 0.529 @ 0.3
mHyERContriever�sup

+DuoRD dataset
0.674 0.578 0.632 @ 0.4 0.562 @ 0.4

mHyERmContriever�sup
+DuoRD dataset

0.684 0.678 0.637 @ 0.3 0.612 @ 0.4

preferences. However, direct similarity search returns exercises explicitly about “choice”,

whereas mHyER retrieves exercises that have learners practice expressing preference in

more natural settings. The last two inputs, “Cooking” and “Sports”, illustrate instances

where direct similarity search yields exercises that too literally match the input.

Aside from retrieval quality, we observe that retrieved results from direct similarity

search also suffer from sentence length bias. In contrastively learned similarity spaces, it

has been empirically observed that the length of a sentence is implicitly encoded in the

representation of a sentence, meaning sentences of a similar length are more likely to be

considered similar [154]. The retrieved exercises from direct similarity search shown in

Table 4.2 clearly exhibit this bias whereas those retrieved via mHyER exhibit a higher
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Table 4.4: Evaluation results on the Tatoeba Tags dataset. mHyER[model] indicates that
contrastive finetuning was used with [model] as the initial checkpoint. +[dataset]
denotes that [dataset] data was used for contrastive finetuning. In all cases, mHyER
outperforms relevant baselines dramatically, with large gains coming from finetuning on
out-of-distribution data.

English English (L2) from Spanish (L1) Spanish (L2) from English (L1)

AUC P@15 AUC
L1

AUC
L2

P@15
L1

P@15
L2

AUC
L1

AUC
L2

P@15
L1

P@15
L2
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se

d
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ra
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g

BERT 0.495 0.032 0.481 0.428 0.019 0.020 0.492 0.505 0.044 0.020
mBERT 0.468 0.037 0.446 0.487 0.038 0.040 0.469 0.442 0.039 0.019
Contriever 0.536 0.161 0.542 0.523 0.112 0.073 0.529 0.549 0.165 0.087
mContriever 0.571 0.064 0.438 0.503 0.051 0.063 0.559 0.564 0.061 0.027
SimCSE 0.646 0.115 0.535 0.559 0.069 0.054 0.635 0.610 0.127 0.068
mHyERmBERT

+en-from-es 0.722 0.225 0.686 0.701 0.227 0.208 0.710 0.696 0.243 0.242

mHyERmBERT
+es-from-en 0.717 0.223 0.697 0.693 0.219 0.211 0.702 0.706 0.237 0.244

mHyERmBERT
+DuoRD dataset

0.752 0.211 0.734 0.738 0.215 0.206 0.739 0.757 0.225 0.242

mHyERContriever
+DuoRD dataset

0.768 0.239 0.644 0.780 0.106 0.232 0.749 0.659 0.265 0.099

mHyERmContriever
+DuoRD dataset

0.729 0.258 0.748 0.723 0.267 0.264 0.713 0.744 0.271 0.294

Su
pe

rv
is

ed
pr

et
ra
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in

g

Contriever-sup 0.541 0.164 0.491 0.492 0.120 0.086 0.530 0.492 0.180 0.105
mContriever-sup 0.575 0.104 0.548 0.510 0.126 0.108 0.560 0.581 0.112 0.101
mHyERContriever�sup

+DuoRD dataset
0.775 0.246 0.668 0.797 0.102 0.240 0.760 0.692 0.268 0.108

mHyERmContriever�sup
+DuoRD dataset

0.738 0.255 0.761 0.734 0.260 0.264 0.722 0.752 0.255 0.280

variation in length. We confirm that this phenomena holds for all inputs in the Tatoeba

Tags English benchmark by retrieving the top 3 exercises across all 139 tags with both

direct similarity search and mHyER. For each exercise, we record its length (measured in

number of characters). As shown in Figure 4.4, exercises retrieved with mHyER are longer

on average, aligning remarkably well with the global sentence length distribution. On the

other hand, direct similarity search yields sentences that are notably shorter on average. This

empirical observation highlights that generating in-distribution retrieval candidates allows

us to retrieve sentences of varied length that track well with our set of exercises.
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4.5.5 Experimental results

In this section, we present our experimental results on the DuoRD dataset and Tatoeba Tags

dataset. For both datasets, we consider two starting points for fine-tuning the BERT embed-

ding model: Unsupervised pretraining, where we contrastively train a BERT checkpoint

that has been pretrained in an unsupervised manner, and supervised pretraining, where

we start with a BERT checkpoint that has been pretrained on MS MARCO [126], a large

scale retrieval dataset that covers different tasks, such as passage ranking and keyphrase

extraction. In all settings, mHyER[model] denotes mHyER with starting with [model] as its

initial checkpoint for contrastive training. [model]-sup indicates [model] was trained

in a supervised manner. We emphasize that at no point in training mHyER is labeled

training data for exercise retrieval used; sup only indicates MS MARCO was used to

train the initial BERT checkpoint. For all experiments, we take the [CLS] representation as

the sentence representation, except when working with Contriever and mContriever, where

we use their custom mean pooling4. For all experiments with mHyER, we adopt the training

setup of [156], which is adapted from [152], including all default hyperparameters. For

retrieval, we synthesize Kh = 10 hypothetical retrieval candidates from GPT-4 and perform

nearest neighbors search with the averaged embedding of all Kh candidates.

DuoRD dataset. The evaluation results of baselines and mHyER on the DuoRD dataset

are presented in Table 4.3. For both unsupervised and supervised settings, we contrastively

finetune BERT checkpoints on the full 40K exercises in the DuoRD dataset. In the un-

supervised pretraining setting, we start our contrastive finetuning with two multilingual

checkpoints: mBERT and mContriever. In this setting, mHyER outperforms all relevant

baselines in both AUC and accuracy, with mHyER mContriever achieving the best performance

among all methods. mHyER mContriever results in 36.8% and 40.2% AUC gains over
4See https://huggingface.co/facebook/contriever for further details.
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mContriever and mBERT, respectively. It is notable that direct similarity search generally

fails to perform well, highlighting that the gap between learner inputs and relevant exercises:

BERT, mBERT, and mContriever baselines fail to even achieve an AUC of 0.5 correspond-

ing to random guessing, reinforcing the fact that direct similarity search cannot overcome

the fundamental mismatch between how learners describe what they want to learn

and exercise content. In the supervised pretraining setting, we start our finetuning from the

Contriever-sup and mContriever-sup checkpoints, which were finetuned on labeled MS

MARCO data. mHyER once again outperforms all baselines, with mHyER mContriever�sup

as the best performing method. Here, supervised pretraining modestly improves the per-

formance of direct similarity search, suggesting that supervised pretraining can lessen the

referential similarity gap in a limited manner. The improvement due to supervised pre-

training is less pronounced when utilizing mHyER, with even one instance of decreased

accuracy. This suggests synthesized retrieval candidates bridge the gap to the point where

further improvement is difficult.

Tatoeba Tags dataset. The evaluation results of baselines and mHyER on the Tatoeba Tags

dataset are presented in Table 4.4. On this dataset, we experiment with contrastive finetuning

on out-of-distribution data. This experiment was inspired by empirical observations from

finetuning mBERT. In particular, we contrastively finetuned mBERT on the Spanish from

English benchmark (denoted es-from-en) and the English from Spanish benchmark

(denoted en-from-es), as well as the 40K out-of-distribution sentence pairs from the

DuoRD dataset (which contains English-Spanish pairs). We observe that finetuning on the

DuoRD dataset outperforms finetuning on in-distribution data. This surprising observation

leads us to finetune Contriever and mContriever checkpoints with the DuoRD dataset in

both the unsupervised and supervised settings. In the unsupervised setting, we once again

observe poor performance from direct similarity search baselines and sizable increases in
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Table 4.5: Ablation results on the Tatoeba Tags dataset. We experiment by removing either
the contrastive finetuning step or the retrieval candidate synthesis step. +GPT indicates that
retrieval candidates were used with no contrastive finetuning, whereas +DuoRD indicates
that direct similarity search was used after contrastively finetuning on the DuoRD dataset.
In a vast majority of cases, contrastive finetuning and retrieval candidate synthesis boost
performance, with retrieval candidates generally contributing more.

English English (L2) from Spanish (L1) Spanish (L2) from English (L1)

AUC P@15 AUC
L1

AUC
L2

P@15
L1

P@15
L2

AUC
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mContriever 0.571 0.064 0.438 0.503 0.051 0.063 0.559 0.564 0.061 0.027
mContriever

+GPT 0.676 0.237 0.613 0.663 0.213 0.213 0.643 0.602 0.245 0.217

mContriever
+DuoRD 0.665 0.096 0.670 0.665 0.119 0.106 0.656 0.657 0.090 0.077

mHyERmContriever
+DuoRD 0.729 0.258 0.748 0.723 0.267 0.264 0.713 0.744 0.271 0.294

Su
pe

rv
is

ed
pr

et
ra
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in

g

mContriever-sup 0.575 0.104 0.548 0.510 0.126 0.108 0.560 0.581 0.112 0.101
mContriever-sup

+GPT 0.731 0.250 0.642 0.724 0.238 0.243 0.706 0.636 0.263 0.258

mContriever-sup
+DuoRD 0.672 0.106 0.678 0.677 0.128 0.120 0.662 0.661 0.113 0.091

mHyERmContriever�sup
+DuoRD 0.738 0.255 0.761 0.734 0.260 0.264 0.722 0.752 0.255 0.280

performance when using mHyER: Up to 39% increases in AUC and more than doubling

the performance of precision@15 between the best mHyER method and best direct

similarity. We observe similar gains in the supervised pretraining setting. Methods that

use Contriever (pretrained only on English data) typically perform better when retrieving

in English, whereas methods using mContriever typically perform better in multilingual

settings.

4.5.6 Ablation study

The two key steps in mHyER are multilingual contrastive pretraining and synthesizing

retrieval candidates. To characterize the relative contributions of each step, we create

variants of mHyER performing direct similarity search after contrastive pretraining or

retrieving with GPT-synthesized retrieval candidates with a non-finetuned encoder (i.e.,

HyDE [147]). As shown in Table 4.5, the combination of both stages yields the best

performance in the vast majority of cases. Utilizing only synthesized retrieval candidates
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results in the larger increases in precision compared to contrastive finetuning, while the

opposite is true for AUC. This suggests that the two steps drive performance increases in

complementary ways: Contrastive finetuning changes the similarity space such that relevant

exercises are closer to learner inputs at a global level, resulting in increases in AUC (which

measures a global ranking of predicitions). However, direct similarity search still cannot

overcome referential similarity gaps, and hence, increases in precision@15 are low relatively.

Meanwhile, synthesizing retrieval candidates directly improves retrieval quality, resulting in

higher retrieval quality, but does not change representations, resulting in relatively lower

increases in AUC.

4.6 Conclusion

In this chapter, we introduce the problem of exercise retrieval for learner directed language

learning and highlight an important challenge in this setting: how learners express what they

want to learn and exercise content are fundamentally semantically different. The effects

of this referential similarity gap are especially pronounced when attempting to retrieve

exercises via direct similarity search: even models supervised on MS MARCO, a large

scale retrieval dataset, struggle to bridge this referential similarity gap. As a result, we

propose mHyER, a zero-shot retrieval approach that leverages the generative capabilities of

pretrained LLMs to synthesize relevant in-distribution sentences which are then used to re-

trieve exercises. We form two novel benchmark datasets by collecting human responses and

processing publicly available data. mHyER outperforms several strong baselines, including

ones trained in a supervised fashion.

Future work. mHyER lays the methodological foundation for self-directed online lan-

guage learning. Many interesting directions of future work exist, ranging from investigating

different learning areas to methodological extensions that accommodate labeled relevance
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information. We discuss several of these directions below.

mHyER provides concrete methodology that can enable future investigations into the

effects of self-directed learning on long-term learning outcomes and curriculum design at

scale. Self-directed learning also play a role in improving other components of personalized

education systems. For example, a learner input into a self-directed learning system can

be viewed as an indicator of a self-perceived weakness, which would provide a powerful

form of supervision for estimating user skill levels. Studying how inputs and outputs of

complementary parts of a unified personalized education system is an important direction of

future work.

Another interesting avenue of future work is investigating if analogous “language about

language” phenomena appear in settings other than language learning. We hypothesize that

such phenomena exist in one form or another across all learning settings. For example, how

learners describe what they want to review in math (e.g., “right angles”) exhibits a similar

fundamental mismatch with exercise text (e.g., “Compute the length of the hypotenuse of

this triangle”). If such gaps exist, methods capable of bridging the referential similarity gap,

like mHyER, will be required across different learning settings. Characterizing the degree

to which such gaps appear, as well as how such gaps differ, in different learning settings

remains important and open work.

From a system design and learner experience perspective, developing machine learning

methods to retrieve relevant exercises based on learner inputs is a foundational piece of any

self-directed language learning system. However, serving a set of exercises that maximizes

relevance may not lead to the best learner experience. Instead, the objective of exercise

retrieval can be made more flexible: Instead of retrieving K exercises that maximize

relevance, we retrieve all exercises with scores that exceed some pre-determined threshold.

Then, this set of relevant exercises can be re-ranked based on additional criteria, such as

difficulty level (with information from Knowledge Tracing-based parts of the system) or

diversity (in terms of difficulty or length). Regardless of precise objective (top K vs. all
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relevant exercises), the referential similarity gap persists, making mHyER especially suitable

for this initial retrieval step.

Methodologically, mHyER was designed explicitly with the goal of zero-shot retrieval.

However, opportunities to collect learner relevance feedback grow as self-directed learning

systems get implemented. Such feedback can then be used to train retrieval methods. In-

vestigating how to effectively use limited learner feedback to help retrieval methods bridge

the referential similarity gap remains an open question. Additionally, extensions of mHyER

to learning settings with multi-modal exercises is direction of future work. Using newly

developed multi-modal models to measure similarity in different domains, such as images

or audio, can unlock a richer learning experience for learners.
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CHAPTER 5

REMOVING HUMANS FROM THE LOOP: LABELED DATASET GENERATION

WITH NO ADDITIONAL HUMAN ANNOTATIONS

In this chapter1, we introduce the HandsOff framework, a technique capable of producing

an unlimited number of synthetic images and corresponding labels after being trained on

less than 50 pre-existing labeled images. Recent work leverages the expressive power

of generative adversarial networks (GANs) to generate labeled synthetic datasets. These

dataset generation methods often require new annotations of synthetic images, which forces

practitioners to seek out annotators, curate a set of synthetic images, and ensure the quality

of generated labels. Our framework avoids the practical drawbacks of prior work by unifying

the field of GAN inversion with dataset generation. We generate datasets with rich pixel-

wise labels in multiple challenging domains such as faces, cars, full-body human poses,

and urban driving scenes. Our method achieves state-of-the-art performance in semantic

segmentation, keypoint detection, and depth estimation compared to prior dataset generation

approaches and transfer learning baselines. We additionally showcase its ability to address

broad challenges in model development which stem from fixed, hand-annotated datasets,

such as the long-tail problem in semantic segmentation.

5.1 Introduction

The strong empirical performance of machine learning (ML) models has been enabled, in

large part, by vast quantities of labeled data. The traditional machine learning paradigm,

where models are trained with large amounts of human labeled data, is typically bottlenecked

by the significant monetary, time, and infrastructure investments needed to obtain said labels.

This problem is further exacerbated when the data itself is difficult to collect. For example,
1The work in this chapter appears in [4]
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Figure 5.1: The HandsOff framework uses a small number of existing labeled images and a
generative model to produce infinitely many labeled images.

collecting images of urban driving scenes requires physical car infrastructure, human drivers,

and compliance with relevant government regulations.

Finally, collecting real labeled data can often lead to imbalanced datasets that are

unrepresentative of the overall data distribution. For example, in long-tail settings, the data

used to train a model often does not contain rare, yet crucial edge cases [165].

These limitations make collecting ever increasing amounts of hand labeled data unsus-

tainable. We advocate for a shift away from the standard paradigm towards a world where

training data comes from an infinite collection of automatically generated labeled images.

Such a dataset generation approach can allow ML practitioners to synthesize datasets in a

controlled manner, unlocking new model development paradigms such as controlling the

quality of generated labels and mitigating the long-tail problem.

In this work, we propose HandsOff, a generative adversarial network (GAN) based

dataset generation framework. HandsOff is trained on a small number of existing labeled

images and capable of producing an infinite set of synthetic images with corresponding

labels (Figure 5.1).

To do so, we unify concepts from two disparate fields: dataset generation and GAN

inversion. While the former channels the expressive power of GANs to dream new ideas
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in the form of images, the latter connects those dreams to the knowledge captured in

annotations. In this way, our work brings together what it means to dream and what it means

to know. Concretely, this chapter makes the following contributions:

1. We propose a novel dataset generating framework, called HandsOff, which unifies

the fields of dataset generation and GAN inversion. While prior methods for dataset

generation [166] require new human annotations on synthetically generated images,

HandsOff uses GAN inversion to train on existing labeled datasets, eliminating the

need for human annotations. With  50 real labeled images, HandsOff is capable of

producing high quality image-label pairs (Section 5.3).

2. We demonstrate the HandsOff framework’s ability to generate semantic segmentation

masks, keypoint heatmaps, and depth maps across several challenging domains (faces,

cars, full body fashion poses, and urban driving scenes) by evaluating performance

of a downstream task trained on our synthetic data (Section 5.4.2, Section 5.4.3, and

Section 5.4.4).

3. We show that HandsOff is capable of mitigating the effects of the long-tail in semantic

segmentation tasks. By modifying the distribution of the training data, HandsOff is

capable of producing datasets that, when used to train a downstream task, dramatically

improve performance in detecting long-tail parts (Section 5.4.5).

5.2 Related work

Our work is built on GANs [43], which consist of a generator that synthesizes new images,

and a discriminator that discerns between real and generated images. Recent advances in

GANs [51, 46, 47, 48, 167, 49] have demonstrated an ability to generate highly realistic

images in numerous domains. We utilize the popular StyleGAN2 architecture [48], which

synthesizes images by passing randomly sampled inputs through a series of style blocks.

Remarkably, StyleGAN2’s W and W+ latent spaces form rich representations of images in
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Figure 5.2: The HandsOff framework. (Top) GAN inversion is used to obtain training
image latent codes, which are then used to form hypercolumn representations. The label
generator is then trained with the hypercolumn representations and original labels. (Bottom)
To generate datasets, the trained label generator is used in conjunction with a StyleGAN2
generator to produce image-label pairs.

a disentangled manner [50, 168, 169, 170], which can be utilized to edit complex semantic

attributes in generated images [168, 171, 101, 172, 173, 174]. The ability to identify

semantically meaningful parts of generated images in the latent representation suggests that

it could be used to generate pixel-level labels. This capability, coupled with GANs’ ability

to generate troves of high quality images, serves as the basis for generating synthetic image

datasets [166, 175, 176, 177].

We build upon DatasetGAN [166], which trains a label generator using representations of

an image formed from the GAN latent code. DatasetGAN requires human annotation of GAN

generated images, which burdens a practitioner to seek out annotations for every new domain

of interest. In addition to labeling, users also must actively curate images to label to ensure

diverse semantic feature coverage and avoid GAN created artifacts. Furthermore, should the

labeling scheme change and render the original labels obsolete, then additional annotations

are again required. Acquiring additional labels is especially contrived when a large of

number of quality human annotated images already exist. A framework that leverages these

real preexisting labeled images would circumvent all of these drawbacks. EditGAN [172], a

follow-on contribution to DatasetGAN, utilizes encoder-based reconstructions to perform
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image editing. BigDatasetGAN[176] exploits the pre-trained encoder of VQGAN[178] to

utilize existing labeled synthetic images. In contrast, our approach links latents of labeled

real images to their labels by employing GAN inversion, the process of mapping a real

image to the latent space of a GAN.

The myriad of inversion techniques range from encoder-based approaches [179, 173,

180, 181], which utilize trained encoders to map images directly to the latent space, to

optimization-based approaches [182, 169, 170], which directly optimize a similarity loss

(e.g., LPIPS [183]) to obtain latents. Some methods modify generator weights to increase

image reconstruction quality [184, 174, 170]. Our work exclusively uses inversion methods

that do not modify the generator, since the generator must remain unperturbed to generate

new images from the original data distribution. We invert images to the W+ space, which is

more expressive than the W space and leads to higher quality reconstructions [50].

5.3 The HandsOff framework

The HandsOff framework, shown in Figure 5.2, consists of three main components: (1) a

generator (realized as a GAN), which maps a latent code w 2 W to an image X , (2) an

inverter, which maps an image X to a latent code w, and (3) a label generator, which maps

a latent code w to a pixel-wise label Y , such as a semantic segmentation mask. HandsOff

exploits the fact that the generator’s latent space forms a rich, disentangled representation of

images. Since these latent spaces already encode semantically meaningful concepts from

images [168, 169, 170], we aim to train a ‘label generator’ that maps latents in this space to

labels.

Unfortunately, training this label generator requires paired data of latents w with labels

Y . One approach, espoused by prior work [166], could be to map the latent w to an image

X , and ask annotators to manually label the image. However, in many applications, paired

data of (X, Y ) is readily available, thanks to the careful efforts of dataset collectors. Our

key insight is that existing labeled image datasets can be used to train a label generator on

92



GAN latent spaces, using techniques from the GAN inversion literature. Below, we describe

our specific approach for GAN inversion (Section 5.3.1), our representation of the GAN’s

latent space (Section 5.3.2), and finally, our label generator (Section 5.3.3).

5.3.1 GAN inversion

The key step in the HandsOff framework is to connect advances in GAN inversion to dataset

generation. GAN inversion allows us to use a small number of pre-existing labeled images

to create a dataset of labeled latents. Our use of pre-existing labels allows practitioners to

re-purpose existing labeled datasets, avoiding the cost of acquiring labels, including the

prerequisite of maintaining annotation workstreams in their machine learning pipelines.

Our GAN inversion is inspired by popular approaches in the image-editing commu-

nity [172, 185]. Given a pre-trained generator G, we first train an encoder to predict a latent

w
(e) from an input image X . In practice, this feed-forward encoder results in a good initial

inversion of an image to a latent input. To refine this initial estimate further, we solve the

following regularized optimization problem:

min
w:kw�w(e)k22creg

LLPIPS(X,G(w))+�`2kX �G(w)k22

where LLPIPS is the Learned Perceptual Image Patch Similarity (LPIPS) loss [183]. Al-

though this problem is highly non-convex, in practice we find that using a fixed number of

gradient descent iterations significantly refines the latent code. This refinement step requires

additional inference time, but this additional cost is incurred only once on a small number

of training images. In our experiments, we utilize ReStyle [173] as the encoder, but we

emphasize that our framework is amenable to any GAN inversion procedure that does not

modify the generator weights. Note that common approaches for GAN inversion fine-tune

the generator in order to achieve a better inversion for a specific image [184, 174, 170]. To

ensure our generator can produce new images from the task domain, we keep the generator
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parameters frozen throughout the inversion process.

5.3.2 Hypercolumn representation

GAN inversion allows us to map images X to latent codes w. We could use these latent

codes directly to train a label generator that maps latent codes w to labels Y . However, this

discards the rich representations encoded by the intermediate layers within the generator.

Rather than training on w directly, we construct a hypercolumn representation S
" from the

generator’s intermediate layers. Specifically, we use a StyleGAN2 generator, where the

latent code w is used to modulate convolution weights in intermediate style blocks, which

progressively grow an input to the final output image. For a 1024 ⇥ 1024 resolution image,

there are L = 18 style blocks. We utilize the approach of [166] and take the intermediate

output of these style blocks, upsample them channel-wise to the resolution of the full image,

then concatentate each upsampled intermediate output channel-wise to obtain pixel-wise

hypercolumns. Our final hypercolumn representation is denoted by S
", with each pixel j

now having a hypercolumn S
"[j] of dimension C. Due to the high dimensionality of the

hypercolumns (C = 6080 for 1024⇥ 1024 images), we cap the generated image resolution

to 512 ⇥ 512, and downsample intermediate outputs from higher resolutions.

5.3.3 Label generator

The label generator exploits the semantically rich latent space of the generator to efficiently

produce high quality labels for generated images. Because the latent codes already map

to semantically meaningful parts of generated images, simple, efficient models suffice

for generating labels. Specifically, like in [166], we utilize an ensemble of M multilayer

perceptrons (MLPs). The MLPs operate on a pixel-level, mapping a pixel’s hypercolumn

to a label. To generate a label for a synthetic image, we pass the hypercolumn formed

by latent code w through the M MLPs, and aggregate the outputs (via majority vote or

averaging) to produce a label. The M MLPs are trained using a small number (⇠50) of
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Table 5.1: Downstream task performance for semantic segmentation tasks across various
domains, reported in mIOU ("). HandsOff outperforms all baselines across all domains
with both 16 and 50 labeled training images. ⇥ indicates a method that could not be run
for a particular domain due to methodological shortcomings, such as requiring additional
hand-labeled data.

# labeled
images

CelebAMask-HQ
8 classes

Car-Parts
10 train

DeepFashion-MM
8 classes

DeepFashion-MM
10 classes

Cityscapes
8 classes

DatasetGAN 16 0.7013 ⇥ ⇥ ⇥ ⇥
EditGAN 16 0.7244 0.6023 ⇥ ⇥ ⇥
Transfer Learning 16 0.4575 0.3232 0.5192 0.4564 0.4954
HandsOff (Ours) 16 0.7814 0.6222 0.6094 0.4989 0.5510

Transfer Learning 50 0.6197 0.4802 0.6213 0.5559 0.5745
HandsOff (Ours) 50 0.7859 0.6679 0.6840 0.5565 0.6047

Table 5.2: Downstream task performance for keypoint detection and depth estimation. Hand-
sOff outperforms all other methods when trained on 16 or 50 labeled images, demonstrating
an impressive ability in generating continuous-valued keypoint heatmaps and depth maps.

# labeled CelebAMask-HQ DeepFashion-MM Cityscapes-Depth
images PCK-0.1 " PCK-0.05 " PCK-0.02 " PCK-0.1 " PCK-0.05 " PCK-0.02 " mNMSE # RMSE # RMSE-log #

Transfer Learning 16 78.96 42.06 7.32 91.24 83.52 48.21 0.4022 18.12 2.75
HandsOff (Ours) 16 97.19 76.36 17.44 94.19 88.48 70.22 0.2553 14.52 1.64

Transfer Learning 50 90.88 61.75 12.30 91.24 83.52 48.20 0.2525 15.07 3.01
HandsOff (Ours) 50 97.71 79.99 19.10 95.41 90.89 74.02 0.1967 13.01 1.58

pre-existing labeled images with a cross-entropy loss for generating discrete labels (e.g.,

segmentation masks) and mean-squared error loss for generating continuous labels (e.g.,

keypoint heatmaps).

Our use of an ensemble of MLPs naturally provides a way to filter out potentially poor

labels by using the prediction uncertainty as a proxy for label quality. For discrete labels, we

can utilize Jensen-Shannon divergence [186, 187, 188, 166] across the M MLPs to produce

pixel-wise uncertainty maps. For predicting continuous labels, we compute the pixel-wise

variance across the MLP outputs. In both cases, the overall image uncertainty is computed

by summing across all pixels.

5.4 Experimental results

We extensively evaluate HandsOff in generating both discrete (segmentation masks) and con-

tinuous (keypoint heatmaps and depth) labels across four challenging domains: Faces, Cars,
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Full-Body Human Poses, and Urban Driving Scenes. We utilize various pre-trained Style-

GAN2 generators [48, 189, 190] and ReStyle inverters [173]. To train the label generator,

we utilize existing labels from CelebAMask-HQ [191], Car-Parts [192], DeepFashion-

MultiModal [193, 194], and Cityscapes [195]. The key assumption of HandsOff is that GAN

inverted image reconstructions align well with the original labels. We present visualizations

of reconstructed image alignment in Section C.3.1. Our label generator architecture across

all domains and tasks is an M = 10 ensemble of 2-hidden layer MLPs. This simple architec-

ture is a distinct strength of the HandsOff framework: intensive parameter and architecture

finetuning are not necessary to achieve state-of-the-art empirical performance. For the label

generator, we provide training details in Section C.1.3, architecture details in Section C.1.5,

and ablations in Section C.2.

5.4.1 Experimental set-up

Downstream network. In all domains and tasks, we utilize DeepLabV3 with a ResNet151

backbone as our downstream network. We generate 10,000 synthetic images and labels, filter

out the top 10% most uncertain images (see Section 5.3.3), and train our downstream network

for 20 epochs with the 9,000 remaining images. For segmentation, we have DeepLabV3

output a probability distribution over all of the parts for each pixel, whereas for keypoints

or depth, we have DeepLabV3 output continuous values. Due to the dynamic nature of

elements in the Cityscapes dataset, slight imperfections in the reconstructions uniquely

affect segmentation mask alignment. To mitigate this, we perform an extra fine tuning step

with the original 16 or 50 labeled examples used to train the label generator while training

for semantic segmentation. Training details for the downstream network can be found in

Section C.1.3 and ablations can be found in Section C.2.

Baselines. We compare HandsOff against three baselines: DatasetGAN, EditGAN, and

Transfer Learning. We are only able to evaluate DatasetGAN in the face domain, as

96



DatasetGAN is unable to accommodate the change in labeling scheme from their custom

labeled car dataset to the larger Car-Parts-Segmentation dataset, thus highlighting another

drawback of requiring GAN labeled images. For EditGAN, we adopt the image editing

framework to synthesize labels for images. However, we are unable to test in the full-body

human poses and urban driving scene domains, as EditGAN has only released checkpoints

for the face and car domains. For the Transfer Learning baseline, we initialize DeepLabV3

with pretrained weights on ImageNet, then finetune the classification head of the model on

the 16 or 50 labeled images used to train HandsOff until convergence. This baseline is used

to benchmark our method, which is trained on up to 50 labeled images, against a model that

is trained on 100,000+ labeled out-of-domain images in addition to the 16 or 50 labeled

in-domain images.

Datasets. For faces, we split CelebAMask-HQ into a set of 50 training, 450 validation,

and 29,500 testing images. We collapse the 19 original segmentation classes into 8 and

scale the keypoint locations in the low resolution version of images found in CelebA to

the full resolution images. For cars, we retain the original 400 image train set, split the

test set into a set of 20 images for validation and 80 images for testing, and collapse the

19 original classes into 10. For full-body human poses, we split DeepFashion-MultiModal

into a set of 200 training, 500 validation, and 12,000 testing images. We collapse the

24 original segmentation classes into 8 and 10 classes and retain the original 21 labeled

keypoint locations. For Cityscapes, because the ground truth test labels are not released, we

split 300 and 1275 images from the original train set for validation and test, respectively.

We utilize the eight groups (e.g., human, vehicle, etc) as our class labels. Note that while

our train sets may contain more than 50 images, we use at most 50 labeled images from

the train sets to train HandsOff in each domain. Details on class collapse can be found in

Section C.1.2.
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Figure 5.3: Examples of HandsOff generated labels (segmentation masks, keypoints, and
depth) across four different domains. Generated labels capture fine details across various
object orientations (CelebAMask-HQ, Car-Parts), object poses (DeepFashion-MM), and
lighting conditions (Cityscapes). Note that HandsOff correctly assigns the label “skin”
to the visible parts of the leg in the ripped areas of jeans (DeepFashion-MM, first row,
first human) and correctly assigns the labels “jacket” and “shirt”, despite the fact that the
jacket and shirt are almost indistinguishable color-wise (DeepFashion-MM, first row, second
human). Furthermore, generated keypoints are accurate despite partial occlusion, such as
eyes behind glasses (CelebAMask-HQ, third and fourth image) or feet covered by long
pants (DeepFashion-MM, second row, last human). HandsOff is also capable of identifying
spatially small objects, such as street signs (Cityscapes, first, third, and fourth image).
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5.4.2 HandsOff generated datasets

We visualize the generated image-label pairs from HandsOff in Figure 5.3. HandsOff

is capable of generating very high quality labels across all domains. In the face domain,

HandsOff is capable of producing segmentation masks that can correctly distinguish left/right

features like eyes or ears and identify rare occurring classes such as glasses. Furthermore, it

produces extremely accurate keypoint locations even when such locations may be partially

occluded. Within the full-body human pose domain, HandsOff produces finely detailed

segmentation masks, best illustrated by the segmentation mask for the first human in the

top row of Figure 5.3, who is wearing a pair of ripped jeans and the second human in the

top row who is wearing the same colored jacket and shirt (see caption for more details).

Generated labels are consistently high quality across a diverse array of object orientations,

as seen in the various face rotations, human poses, or car orientations of Figure 5.3. Finally,

in extremely complex scenes, such as Cityscapes, HandsOff produces labels for visually

minuscule classes, such as street lamps or traffic signs. Additional examples of generated

labels can be found in Section C.3.3.

5.4.3 Segmentation results

As seen in Table 5.1, we achieve state-of-the-art performance on synthetic data trained

semantic segmentation in all four domains, as measured in mean Intersection-over-Union

(mIOU). Specifically, HandsOff outperforms DatasetGAN by 11.4% and EditGAN by 7.9%

in the face domain when trained with the same number of labeled images. Increasing

the number of labeled training images for HandsOff results in further performance gains,

with 12.1% and 8.5% improvements over DatasetGAN and EditGAN, respectively. Unlike

DatasetGAN, we are able to increase the number of labeled training images without incurring

the associated costs of collecting new human annotated images. We emphasize again that

with new domains, such as full-body human poses or urban driving scenes, it is not possible

to train DatasetGAN-based frameworks as they rely on manual labels for GAN generated
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(a) (b) (c)

Figure 5.4: Substitution experiments for various long-tail parts; (a) in cars - trunk (T), back
bumper (B), back window (W); (b) in faces - glasses (G), hats (H). As the proportion of
images containing the long-tail part increases in the training set, the performance of the
long-tail class improves until it enters the overfitting regime. Non-long-tail mIOU tracks
closely with overall IOU, implying dramatic gains in long-tail IOU do not come at the
expense of other parts. (c) Addition experiments for face long-tail parts. (+H/G) indicates
that images containing hats and images containing glasses are added to a base set, while
(-H/G) indicates images containing neither hats nor glasses are added. The long-tail IOU of
both parts simultaneously increase as images containing hats and images containing glasses
are added to the base training set, with no negative impact on the performance of other
classes.

images. Therefore, we benchmark against the transfer learning baseline in these domains.

Notably, HandsOff outperforms the transfer learning baseline by 17.4% (full-body human

poses) and 11.2% (urban driving scenes) when both methods are trained on 16 labeled

images; and 10.1% (full-body human poses) and 5.3% (urban driving scenes) when trained

on 50 images.

5.4.4 Keypoint and depth results

We utilize HandsOff to generate continuous valued labels for keypoints and depth tasks.

As seen in Table 5.2, we demonstrate strong empirical performance in generating both

keypoints and depth maps. To synthesize keypoints, we utilize the keypoint heatmap

regression frramework, where our label generator is asked to output a continuous-valued

spatial heatmap for each keypoint. See Section C.1.6 for a detailed explanation of keypoint

regression. For downstream task performance, we report the Percentage of Correct Keypoints

(PCK) for different threshold values ↵, denoted PCK-↵. For a keypoint to be predicted
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correctly, the estimate must be no further from the true keypoint than ↵ ·max{h, w}, where

h and w are the height and width of the minimum size bounding box that contains all of

the keypoints. We note that even for small ↵ (i.e., ↵ = 0.02), HandsOff is able to correctly

predict 2.4⇥ and 1.5⇥ more keypoints than the transfer learning baseline in the face and

full-body human pose domains, respectively. This implies that HandsOff is able to predict

keypoints up to an extremely tight radius of the original keypoint location compared to other

methods.

For depth, we report masked normalized mean-squared error (mNMSE), root mean-

squared error (RMSE), and root mean-squared error of the log-depth values (RMSE-log).

Because Cityscapes depth maps contain corrupted depth values, we train HandsOff only

non-corrupted pixels. Furthermore, to compute mNMSE, we compute the normalized mean-

squared error only on the non-corrupted pixels. That is, let by and y are the predicted and

true depth maps, respectively, and M be a mask indicating the non-corrupted elements

of y. mNMSE is computed as kbyM�yMk22
kyMk22

, where aM denotes the depth map a at non-

corrupted locations. When reporting RMSE and RMSE-log, we adopt the standard practice

[196, 197] in depth estimation of cropping the middle 50% of the image and clamping

predicted depth values to be within 0.001 and 80 before computing RMSE and RMSE-log

values. As shown in Table 5.2, HandsOff is able to achieve a sizable advantage in all three

metrics, outperforming transfer learning, resulting in 36.5%, 19.9%, and 40.27% decreases

in mNMSE, RMSE, and RMSE-log when trained on 16 labeled images and 22.1%, 13.6%,

and 47.6% decreases when trained on 50 labeled images.

5.4.5 Long-tail semantic segmentation

The HandsOff framework’s ability to generate high quality synthetic datasets unlocks

new degrees of freedom for model development previously unachievable with fixed, hand-

annotated datasets. We now explore one example: mitigating the effects of the long-tail

common in semantic segmentation datasets. For CelebAMask-HQ, images with hats and
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Figure 5.5: Visualization of generated segmentation mask (top row) and pixel-wise label
generator uncertainty (bottom row) as the proportion of the training set containing the
glasses increases. Not only do we see qualitative improvement in the generated label for
glasses, we also see that the classifier is less uncertain when generating the correct label.

glasses make up less than 5% of the 30,000 labeled images, and a similar situation exists

with trunks, back bumpers, and back windows in the Car-Parts dataset. These examples form

the long-tail classes of their respective datasets, and their rare occurrence during training

results in poor model performance at evaluation time.

The HandsOff framework altogether sidesteps this limitation of traditional datasets: by

generating labeled synthetic images, we can control the occurrence of rare classes in our

training data and significantly mitigate the effects of the long-tail. Because training the label

generator requires less than 50 annotated images, we only require 5-10 occurrences of long-

tail classes in order to generate an unlimited number of those occurrences in our synthetic

dataset. Our experiments precisely quantify the small number of annotated examples of rare

classes required to significantly improve downstream task performance on those classes.

They fall into two categories: Substitution experiments, that fix a total number of training

images and vary the proportion of rare class occurrences, and Addition experiments, that

grow the size of the training set by adding images with rare classes. The substitution

experiments ensure that any gains in the performance of identifying the long-tail class

are not a by-product of increasing training set size. We perform substitution experiments

considering only one long-tail part at a time. On the other hand, the addition setting is

indicative of how a practitioner would deploy HandsOff: starting with a base set of labeled
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training images and further augmenting it with images containing rare classes deemed crucial

to identify. To mirror what often happens in practice, we perform addition experiments by

adding images containing multiple long-tail classes at a time.

Substitution. We begin with an initial set of 16 (cars) or 50 (faces) labeled images

containing one image of the rare part, and then vary the proportion of the rare part. As

seen in Figure 5.4a and Figure 5.4b, a small proportion of rare classes results in poor class

identification performance, but as the proportion of images with long-tail classes increases,

the long-tail part IOU increases by as much as 0.55 for car trunks and 0.40 for face glasses

before eventually plateauing. We note that hats are a particularly challenging part to generate

labels for due to the diversity of their size, shape, color, and orientation. Nevertheless, we

still see a sizable increase of 0.2 IOU. We additionally plot the overall mIOU and the mIOU

of non-long-tail parts to demonstrate that modifying the composition of the training set

does not hurt performance on non-long-tail parts. In other words, shifting the training set

part distribution to an extent has negligible impacts on the performance of non-long-tail

parts, while resulting in large gains in long-tail class detection. Beyond proportions of ⇠0.7,

further increasing the proportion of the training set eventually causes drops in both long-tail

part IOU and the mIOU of non-long-tail parts, owing to the label generator hallucinating

long-tail classes where they do not belong. The impacts of substituting images with long-tail

classes are best illustrated in Figure 5.5. As the proportion of images with glasses grows, the

generated mask captures glasses with increasing accuracy, eventually even distinguishing

eyes that are visible through the glasses. Underneath the segmentation masks, we showcase

the pixel-wise label generator uncertainty measured by Jensen-Shannon divergence (See

Section 5.3.3). Not only does the generated label improve qualitatively, the label generator

is less uncertain about the region of the image corresponding to the glasses. Additional

visual examples of both segmentation mask and label generator uncertainty can be found in

Section C.3.4.

Addition. We augment a small training set of 15 images with additional images contain-
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ing hats or glasses. Figure 5.4c demonstrates significant IOU increases (+0.71) in long-tail

classes. The figure further highlights that these increases are not simply due to additional

examples: targeted additions outperform the scenario where we add the same number of im-

ages, but the added images do not contain hats or glasses. These improvements in long-tail

classes do not come at the expense of performance in other classes, as demonstrated by the

overall mIOU and mIOU of non-long-tail classes. Unlike the substitution experiments, these

performance improvements do not eventually drop, since the number of training examples

continues to increase.

Our experiments showcase the power of the HandsOff framework to mitigate the long-

tail problem. By explicitly including images with the long-tail class in our label generator

training data, we are able to bridge the gap between performance in rare and common classes.

The number of images with long-tail classes necessary to generate high quality labels of the

long-tail is even smaller than the already small number of images needed to train HandsOff,

meaning that the gains in long-tail class performance essentially come for free. If the long-

tail class has been deemed crucial to identify, then it is likely that a practitioner has access

to ⇠20 labeled images containing the long-tail class. The performance gains in long-tail

performance achieved by HandsOff are not practically replicable in DatasetGAN, where

human supervision is needed to both identify generated images containing the long-tail class

and provide precise pixel-level annotations.

5.5 Conclusion

We present the HandsOff framework, which produces high quality labeled synthetic datasets

without requiring further annotation of images for a multitude of tasks across various

challenging domains. HandsOff achieves state-of-the-art performance over several re-

cent baselines when training a downstream network with our synthetically generated data.

Furthermore, HandsOff enables user control of the training data composition, leading to

dramatic performance gains in long-tail semantic segmentation. This suggests that HandsOff
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can play a vital role in curtailing the effects of the long-tail. While synthetic datasets have

the potential to supplant human annotations, they can also complement them. We leave

as future work to investigate the collaborative power of having a human-in-the-loop refine

synthetically generated annotations, and bring about the best of both worlds.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Machine learning models are improving at a breakneck pace, driven by new novel architec-

tures, training procedures, and a wealth of available training data. This thesis examines the

crucial role humans play in the development of these intelligent machine counterparts. In

the development of large models, human feedback has proven to be an invaluable source in

guiding models towards more desirable outputs. As such, collecting human feedback on

model outputs is a large-scale ongoing process, necessitating heavy investment in terms of

time, money, and infrastructure. Part I of this thesis investigates two methods of easing this

data collection burden, from stretching the effectiveness of responses we may already have

(Chapter 2) to designing new ways of eliciting expressive responses (Chapter 3).

The advent and availability of powerful models opens an exciting orthogonal avenue

of research: How we can leverage existing tools to avoid the burden of human feedback

collection. Part II of this thesis examines two specific application settings where collecting

human feedback can be avoided with contemporary pretrained models. In Chapter 4,

we consider an information retrieval setting, and show that the generative of ability of

language models can generate relevant content for user queries, greatly improving retrieval

performance in the cold-start regime. In Chapter 5, we successfully utilize image editting

models to remove humans annotators from a popular synthetic dataset generation framework.

In all, the work in this thesis results in several exciting future directions of research.

The work in Chapter 2 has already yielded a line of follow-up working investigating

crowd-based preference and metric learning from paired comparisons [100, 198], which

proves rigorous statistical guarantees. Mahalanobis metrics, while more expressive than

the standard Euclidean metric, allow only for first order feature interactions. Whether

this adequately captures the intricacies of human preference judgements remains an open
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question. Indeed, recent work has begun investigating learning more complex models of

human preference, such as distributions [199, 200].

The work in Chapter 3 demonstrates the expressive power of PAQs in a controlled

empirical setting. Applying such queries to real-world perception settings is a natural

direction of future work. Additionally, the structure of a PAQ makes the image domain a

natural setting for application. Adapting the PAQ to more discrete settings, such as natural

language, is an open line of work. Statistically, the inverted measurement paradigm presented

in this chapter introduces several open statistical problems. Whether or not the derived

cube-root estimation rate is fundamental (i.e., minimax optimal) is an interesting avenue of

future work. If not, design of improved statistical estimators under this measurement model

is an exciting future direction.

The work in Chapter 4 examines retrieval in the specific context of online language

learning, a modality that is largely text. A promising line of future work is extending the

developed retrieval approaches to multi-modal application areas, such as geometry or natural

sciences, by utilizing multi-modal generative models. More generally, because retrieval

itself has been integrated into natural language generation, a process known as retrieval-

augmented generation (RAG) approaches, it would interesting to explore how generative

models can help themselves in retrieval. Instead of utilizing direct search, could language

models conditionally generate content based on user prompts, then utilize such content to

search for external sources to correct or augment model responses?

The work in Chapter 5 develops new methodology for utilizing real, existing images

and annotations for GAN-based synthetic dataset generation. Extensions of HandsOff have

already been implemented with diffusion models [201, 202], enabling exciting avenues of

future exploration, such as open-vocabulary dataset generation. These methods operate simi-

larly to HandsOff, where a pretrained image generation model is fixed, and a label generator

is learned on top of existing representations. An interesting line of future exploration is

the training of generative models and label generators entirely from scratch. Could teach
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a model to jointly synthesize images and labels lead to better learned representations, and

therefore higher quality images?

The partnership between humans and machines is ever-evolving, with much emphasis

placed on the development of machines. Partnerships, however, require collaboration,

meaning humans still have a crucial role to play.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Proof of Proposition 1

Proof. Let w 2 Rd be arbitrary. Note that for any point x 2 Rd, one can easily show that

kx� uk2⌃? = kx�wk2⌃? (A.1)

if and only if

h2x� u�w,⌃?(u�w)i = 0. (A.2)

This follows simply by expanding the expressions on both sides of (Equation A.1) and

rearranging the terms to obtain (Equation A.2).

We now show that if u is identifiable then ⌃? is strictly positive definite. Suppose for

the sake of a contradiction that ⌃? is not strictly positive definite, i.e., that there exists a

non-zero v 2 Rd such that ⌃?v = 0. Let w = u� v. Then, by (Equation A.2)

h2x� u�w,⌃?(u� (u� v)i = h2x� u�w,⌃?vi = 0.

From this we can show that, kx� uk2⌃? = kx� (u� v)k2⌃? . This is a contradiction since

u cannot be identifiable as w = u� v 6= u would yield identical observations.

We now show that if ⌃? is positive definite then u is identifiable. Suppose that w 2 Rd

satisfies kx � uk2⌃? = kx � wk2⌃? for all x 2 Rd. From (Equation A.2) we have that

because h2x�u�w,⌃?(u�w)i = 0 8x 2 Rd, it must be the case that ⌃?(u�w) = 0.

If ⌃? is positive definite, then it must be the case that u�w = 0, and hence w = u. ⇤
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A.2 Additional Synthetic Simulation Results

Additional results for single-step estimation For the single-step estimation experiment

found in Section 2.4.1, we also quantify algorithm performance via the normalized Kendall’s

Tau distance and the fraction of top 5 and 20 items correctly identified. The median (or

interpolated median) and 25% and 75% quantiles are reported in Figure A.1. While the

normalized Kendall’s Tau distance decreases for d = 2, 5, and 10, it does so rather slowly.

This is due to the fact that many items are very similar to each other in terms of their distance

from u, and hence getting the exact ordering of all items correct is rather difficult. However,

the performance in identifying the top 5, 10, and 20 items is strong, which indicates that the

algorithm is in fact learning which items are important.

Figure A.1: Median normalized Kendall’s Tau distance and interpolated median fraction
of top 5 and 20 items identified over 100 trials, plotted with 25% and 75% quantiles.
Regularization parameters: �1 = 2, �2 = 0.002, �3 = 0.001,↵ = 1.

Single-step estimation when ⌃? = I We demonstrate the effectiveness of our algorithm

when ⌃? = I and compare performance with Euclidean Algorithm 1 and Euclidean

Algorithm 2 as defined in Section 2.4.1. We sweep the performance for all three algorithms

for D = 2 over different numbers of comparisons between 10 and 500. For a fixed number

of comparisons, we perform 100 trials and report the median (or interpolated median) and

25% and 75% quantile for UR error, normalized Kendall’s Tau distance, and the fraction of

top 5, 10, and 20 items identified. For each trial, we generate a new metric and ideal point

and N = 100 new items. As seen in Figure A.2, there is no significant loss in performance
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Figure A.2: Comparison of singe-step estimation against Euclidean Algorithms 1 and 2
when the true distance metric is I . Regularization parameters: �1 = 2, �2 = 0.002, �3 =
0.001,↵ = 1.

when using our algorithm, especially as the number of comparisons increases. Thus, adding

the additional flexibility to allow for ⌃? 6= I does not seem to result in any significant

penalties, even when ⌃? is in fact I .

Additional results for alternating estimate For the alternating estimation experiment

found in Section 2.4.1, we also quantify algorithm performance via the WER error, normal-

ized Kendall’s Tau distance, and fraction of top 5, 10 and 20 items correctly identified. The

median (or interpolated median) and 25% and 75% quantiles are reported in Figure A.3.

In the intermediate regime (between 40 and 200 comparisons), the alternating estimate

generally improves the WER error and fraction of top K items identified. The normalized

Kendall’s Tau distance remains relatively the same for all comparisons, but the improvement

in the fraction of top K items indicates that the algorithm improves in identifying the which

items are close to the ideal point.
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Figure A.3: Median WER error, normalized Kendall’s Tau distance, and interpolated
median for top 5, 10, and 20 items for single-step and alternating estimation. Regularization
parameters: �(0)

1 = 2, �(0)
2 = 0.002, �(0)

3 = 0.0001,↵(0) = 1; �(k)
1 = 2

3 , �
(k)
2 = 1

15 , �
(k)
3 =

7
1500 ,↵

(k) = 1
2 for k � 1.

A.3 Data Pre-processing

Unranked Candidates dataset pre-processing The Unranked Candidates dataset is origi-

nally comprised of 3, 789 total applicants, with 191 admitted with fellowship, 530 admitted

without fellowship, and 3068 denied candidates. Ten raw features are associated with each

candidate (Self-reported GRE analytical writing, self-reported GRE verbal, self-reported

GRE quantitative, official GRE analytical writing, official GRE verbal, official GRE quan-

titative, GPA, and up to three scored letters of recommendation). Some candidates have

missing entries for some of the ten raw features. Depending on which features are used to

generate input data for the algorithm, we remove candidates with relevant missing data. If

GRE scores are used, for each candidate, we take the official GRE scores to be the true GRE

scores. If the official GRE scores are missing, then we take the self-reported scores. The

raw GPA scores are already normalized on a 0 to 4 scale, but the normalization resulted
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in some unusable entries. If the GPA feature is used, we only keep candidates with GPAs

between 1 and 4. The LoR score is computed as described in Section 2.4.2. In all, there

are 3305 candidates with no missing entries (176 admitted with fellowship, 455 admitted

candidates, and 2674 denied candidates).

Ranked Candidates dataset pre-processing The Ranked Candidates dataset originally

contains 89 candidates with four raw features (GRE analytical writing, GRE verbal, GRE

quantitative, and GPA). For this dataset, there is only one GRE score available to us, so

there is pre-processing needed to discern between self-reported and offiical. There is one

candidate with missing raw features who is discarded, leaving us with 88 usable candidates.

A.4 Additional Experimental Results

Additional results for Unranked Candidates dataset As reported in Section 2.4.2, the

ideal point and metric is learned using a set of 100 candidates (nF = 33, nA = 33, and

nD = 34) and all possible comparisons (3333). The significant feature interactions are

reported in Table A.1, along with the corresponding eigenvalues. The weighted difference

and sum of GPA and GRE writing score are the top two feature interactions and are almost

equally important, followed by the LoR score and the weighted difference between GRE

quantitative and verbal scores. The most insignificant feature interaction is the weighted

sum of the quantitative and verbal scores.

Using the same number of candidates and comparisons, we also learn feature interactions

and ideal points for pairs of features. For all pairs of features aside from GRE verbal vs.

GRE quantitative (presented in Section 2.4.2), we display the level sets for the learned

metric in Figure A.5. We again note that learning the ideal point with inherently restrictive

features leads to unexpected behavior. In many cases, the ideal point value falls well outside

of the allowed range for many of the features. For example in the GRE quantitative vs.

GPA pair, the ideal GPA is 35, which is much larger than 4. In these cases, the fact that
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Table A.1: Feature interactions and corresponding eigenvalues for the Unranked Candidates
dataset for nF = 33, nA = 33, nD = 34 and 3333 comparisons. Regularization parameters:
�1 =

1
650 , �2 =

1
6500 , �3 =

2
65 · 10

�6
,↵ = 1.

Feature interactions in c⌃?.

�1 = 1991 0.909 GRE writing � 0.392 GPA
�2 = 1971 0.919 GPA + 0.393 GRE writing
�3 = 1178 0.982 LoR
�4 = 861 0.942 GRE quant � 0.310 GRE verbal
�5 = 286 0.942 GRE verbal + 0.319 GRE quant

Figure A.4: Normalized Kendall’s Tau distance for top 11 ranked candidates identified.
Regularization parameters: �1 =

7
6002 , �2 =

1
6002 , �3 =

2
6002 · 10

�4
,↵ = 1.

the ideal value is higher than the maximum allowed values indicates that the larger the

score, the better. This is consistent with our expectation that the optimal set of features

should be the maximum value for all possible features. Many pairs of features do not have

meaningful learned interactions, but pairs of features such as GRE writing vs. GPA do have

some meaningful interaction.

Additional results for Ranked Candidates dataset For the Ranked Candidates dataset,

we also record the the normalized Kendall’s Tau distance for the top 11 candidates. We

choose to evaluate the ranking of the top 11 candidates because these candidates are the

ones most likely to be admitted. The median normalized Kendall’s Tau distance and 25%

and 75% quantiles can be found in Figure A.4. As the number of comparisons increases, we
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are able to extremely accurately predict the exact ranking of the top 11 candidates.

The learned metric using all 2610 comparisons does not exhibit any meaningful feature

interactions. GPA and GRE writing are the top two features with roughly equal eigenvalues,

followed by GRE quantitative. The GRE verbal score is the least significant feature. This is

consistent with our expected order of significance of features for candidates.
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Figure A.5: Level sets for pairs of features for Unranked Candidates dataset.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 Simulation details

In this section, we provide details for the simulation results presented in Figure 3.2. For our

experiments, we adopt a normalized version of the setup of [106] and form the metric ⌃? by

⌃? = LL>
/kLL>kF , where L is a 50⇥ 10 matrix with i.i.d. Gaussian entries. We sweep

the number of query responses N , estimate the metric with b⌃, and report the normalized

estimation error k⌃? � b⌃kF/k⌃?kF averaged over 10 independent trials. For each query

response, items are drawn i.i.d. from a standard multivariate normal distribution, similar

to [203].

Pairwise comparison setup. For pairwise comparisons, we use value of y = 10 to denote

the squared distance at which items become dissimilar, following our distance-based model

for human perception (see Section 3.3.1). For the i-th pairwise comparisons, we draw

two items x(i)
1 ,x(i)

2 i.i.d. from a standard multivariate normal distribution. We record the

pairwise comparison outcome ✏i 2 {�1,+1} as ✏i = sign(kx(i)
1 �x(i)

2 k2⌃? �y). To estimate

the metric from pairwise comparisons, we utilize a nuclear-norm regularized hinge loss and

solve the following optimization problem:

b⌃PC 2 argmin
⌃⌫0

1

N

NX

i=1

max{0, y � ✏ikx(i)
1 � x(i)

2 k2⌃}+ �PCk⌃k⇤.

Triplet setup. For the i-th triplet, we draw three items x(i)
1 ,x(i)

2 ,x(i)
3 i.i.d. from a standard

multivariate normal distribution and record the outcome ✏i 2 {�1,+1} as ✏i = sign(kx(i)
1 �

x(i)
2 k2⌃? �kx(i)

1 �x(i)
3 k2⌃?). To estimate the metric from triplet responses, we follow [25] and
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utilize a nuclear-norm regularized hinge loss and solve the following optimization problem:

b⌃T 2 argmin
⌃⌫0

1

N

NX

i=1

max
n
0, 1� ✏i

⇣
kx(i)

1 � x(i)
2 k2⌃ � kx(i)

1 � x(i)
3 k2⌃

⌘o
+ �Tk⌃k⇤.

Ranking-k query setup. For the i-th ranking query with a reference item x0 and k items

x1, . . . ,xk to be ranked, we draw all items i.i.d. from a standard multivariate normal

distribution. For each item xk, we compute the squared distance kx0�xkk2⌃? . To determine

the ranking of items, we sort the items based on this squared distance. To estimate the

metric, we follow the approach of [28] and decompose the full ranking into its constituent

triplets. A ranking consisting of k items can equivalently be decomposed into k(k � 1)/2

triplet responses. To estimate the metric, we decompose each ranking query and use the

triplet estimator presented above with regularization parameter �R to obtain estimate b⌃R-k.

PAQ setup. For the i-th PAQ response, we draw the reference item xi and query vector

ai i.i.d. from the standard multivariate normal distribution. We then receive a scaling �
2
i

satisfying �
2
i = y/a>

i ⌃
?ai, with y = 10. To perform estimation, we leverage our method

presented in Section 3.4. Our theoretical results indicate that the averaging parameter m

should be set to 1 in the noiseless setting. Furthermore, the truncation threshold ⌧ is large

relative to our responses �2
i , meaning no truncation is employed. As a result, we solve the

nuclear-norm regularized trace regression problem

b⌃PAQ 2 argmin
⌃⌫0

1

N

NX

i=1

✓
haia

>
i ,⌃i � y

�
2
i

◆2

+ �PAQk⌃k⇤.

In all cases above, we solve all optimization problems with cvxpy and normalize the

estimated metric b⌃{PC, T, R-k, PAQ} to be unit Frobenius norm to ensure consistent scaling

when compared against the true metric ⌃?. We use a value of 0.05 for all regularization

parameters �{PC, T, R-k, PAQ} and observe similar performance trends for other choices of
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regularization parameter.

B.2 Scale equivariance

In this section, we verify that the scale-equivariance of our derived theoretical bounds

(Equation 3.15) and (Equation 3.16). Specifically, we denote by ⌃? and b⌃ the ground-

truth and the estimated matrices corresponding to value y. We denote by ⌃?
c and b⌃c the

ground-truth and estimated matrices corresponding to value cscaley for any cscale > 0. By

definition, we have ⌃?
c = cscale⌃?, and it can be verified that solving the optimization

program (Equation 3.10) yields b⌃c = cscale
b⌃. Hence, one expects the error bound to scale

as cscale. To verify this linear scaling in cscale, we confirm that the noise ⌘ scales as cscale.

Under the ground-truth metric ⌃?, if the user responds with an item that is a distance

y+⌘ away from the reference item, then that same item is a distance cscale(y+⌘) away from

the reference under the scaled setting. As a result, the noise scales as a result of the choice

of y. Therefore, the following values in the upper bound (Equation 3.15) can be written as

scaled versions of their corresponding “ground-truth” values.

Noise ⌘ = cscale ⌘? Noise median µy = cscale µ
?
y

Noise upper bound ⌘
" = cscale ⌘

"
? Boundary upper bound y

" = cscale (y? + ⌘
"
?)

Noise variance ⌫
2
⌘ = c

2
scale ⌫

2
⌘,? Singular values �k = cscale �

?
k

Substituting these scaled expressions into the upper bounds (Equation 3.15) and (Equation 3.16),

we have

kb⌃c �⌃?
ckF  cscale C

0 (�
?
1)

2

�?
r

(y"?)
4/3(⌫2

⌘,?)
1/3

(µ?
y)

2
r
3/2

✓
d

N

◆1/3

in the high-noise regime and

kb⌃c �⌃?
ckF  cscale C

0 (�
?
1)

2

�?
r

✓
y
"
?

µ?
y

◆2

r
3/2

✓
d

N

◆1/2

in the low-noise regime. Note that the constant C 0 is independent of cscale.
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B.3 Background and preliminary results

In this section, we provide an overview of the key tools that are utilized in our proofs.

B.3.1 Inverted measurement sensing matrices result in estimation bias

Recall from (Equation 3.5) that the random sensing matrix Ainv takes the form

Ainv =
y + ⌘

a>⌃?a
aa>

.

Standard trace regression analysis assumes that for some sensing matrix A and measure-

ment noise ⌘, E [⌘A] = 0. Specifically, it is often typically assumed that ⌘ is zero-mean

conditioned on the sensing matrix A. The following lemma shows that for the inverted

measurements, we have E[⌘Ainv] 6= 0, resulting in bias in estimation.

Lemma 1. Let Ainv be the random matrix defined in (Equation 3.5) and ⌘ be the measure-

ment noise. Then

E
⇥
⌘Ainv

⇤
6= 0.

The proof of Lemma 1 is provided in Section B.3.6. Hence, utilizing established low-rank

matrix estimators for inverted measurements result in biased estimation.

B.3.2 Sub-exponential random variables

Our analysis utilizes properties of sub-exponential random variables, a class of random

variables with heavier tails than the Gaussian distribution.

Lemma 2 (Moment bounds for sub-exponential random variables [6, Proposition 2.7.1(b)]).

If X is a sub-exponential random variable, then there exists some constant c (only dependent
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on the distribution of the random variable X) such that for all integers p � 1,

(E|X|p)1/p  cp.

B.3.3 Bernstein’s inequality

In our proofs, we use Bernstein’s inequality to bound the sums of independent sub-

exponential random variables.

Lemma 3 (Bernstein’s inequality, adapted from [204, Theorem 2.10]). Let X1, . . . , Xn be

independent real-valued random variables. Assume there exist positive numbers u1 and u2

such that

E
⇥
X

2
i

⇤
 u1 and E [|Xi|p] 

p!

2
u1u

p�2
2 for all integers p � 2,

Then for all t > 0,

P
 �����

1

n

nX

i=1

(Xi � E [Xi])

����� �
r

2u1t

n
+

u2t

n

!
 2 exp(�t).

B.3.4 Moments of the ratios of quadratic forms

The quadratic term a>⌃?a appears in the denominator of our sensing matrices, so we use

the following result to quantify the moments of the ratios of quadratic forms.

Lemma 4. There exists an absolute constant c > 0 such that the following is true. Let

a ⇠ N (0, Id), ⌃? 2 Rd⇥d be any PSD matrix with rank r, and U 2 Rd⇥d be an arbitrary

symmetric matrix.

(a) Suppose that r > 8. Then we have

E
✓

1

aT⌃?a

◆4

 c

�4
rr

4
.
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(b) Suppose that r > 2. Then we have

E
✓
a>Ua

a>⌃?a

◆
 c

�rr
kUk⇤.

The proof of Lemma 4 is presented in Section B.3.6.

B.3.5 A fourth moment bound for �̄2

Recall from (Equation 3.7) that the averaged measurement �̄2 takes the form

�̄
2
i =

1

m

mX

j=1

y + ⌘
(j)
i

a>
i ⌃

?ai
=

y + ⌘̄i

a>
i ⌃

?ai
.

Throughout our analysis, we utilize the fact that �̄2 has a bounded fourth moment, as

characterized in the following lemma.

Lemma 5. Assume r > 8. Then there exists a universal constant c > 0, such that

E
�
�̄
2
�4  c

✓
y + ⌘

"

�rr

◆4

,

where �r is the smallest non-zero singular value of ⌃?.

The proof of Lemma 5 is presented in Section B.3.6. For notational simplicity of the

proofs, we denote M = c

⇣
y+⌘"

�rr

⌘4
.

B.3.6 Proofs of preliminary lemmas

In this section, we present proofs for preliminary lemmas from Section B.3.1, Section B.3.4,

and Section B.3.5.
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Proof of Lemma 1

Using the independence of the noise ⌘ and the sensing vector a, and the assumption that ⌘

is zero mean, we have

E
⇥
⌘Ainv

⇤
= E


⌘(y + ⌘)

a>⌃?a
aa>

�

= E [⌘(y + ⌘)] · E


1

a>⌃?a
aa>

�

= ⌫
2
⌘ E


1

a>⌃?a
aa>

�
. (B.1)

The expectation in (Equation B.1) is non-zero, because the random matrix 1
a>⌃?aaa

> is

symmetric positive definite almost surely. Therefore, we have E
⇥
⌘Ainv

⇤
6= 0, as desired.

Proof of Lemma 4

Since ⌃? is symmetric positive semidefinite, it be decomposed as Q⌃Q>, where Q is a

square orthonormal matrix and ⌃ is a diagonal matrix with non-negative entries. Multiplying

a by any square orthonormal matrix does not change its distribution. Therefore, without

loss of generality, we assume that ⌃? is diagonal with all non-negative diagonal entries. We

first note that the moments of the ratios in both parts of Lemma 4 exist, because by [205,

Proposition 1], for non-negative integers p and q, the quantity E (a>Ua)
p

(a>⌃?a)
q exists if r

2 > q.

Furthermore, we use the following expression from [205, Proposition 2]:

E
�
a>Ua

�p

(a>⌃?a)q
=

1

�(q)

1Z

0

t
q�1 · |�t| · E

�
a>�tU�ta

�p
dt, (B.2)

where �t = (Id + 2t⌃?)�1/2 and |�t| is the determinant of �t. To characterize the

determinant |�t|, we note that �t is a diagonal matrix whose d diagonal entries are

1

(1 + 2t�1)
1/2
, . . . ,

1

(1 + 2t�r)
1/2
, 1, . . . , 1.
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Hence, the determinant is the product |�t| =
Qr

i=1
1

(1+2t�i)
1/2 . Furthermore, this product

can be bounded as:

|�t| 
1

(1 + 2t�r)
r/2
. (B.3)

We now prove parts (a) and (b) separately.

Part (a). Using the integral expression (Equation B.2) with p = 0 and q = 4, and the

upper bound (Equation B.3) on the determinant, we have

E
✓

1

a>⌃?a

◆4

=
1

�(4)

1Z

0

t
3 · |�t| dt

 1

�(4)

1Z

0

t
3 1

(1 + 2t�r)
r/2

dt.

Denoting s := 1 + 2t�r, we have

E
✓

1

a>⌃?a

◆4

 1

2�(4)�r

1Z

1

✓
s� 1

2�r

◆3 1

s
r/2

ds

. 1

�4
r

1Z

1

(s� 1)3

s
r/2

ds

=
1

�4
r

1Z

1

✓
s
3

s
r/2

� 3
s
2

s
r/2

+ 3
s

s
r/2

� 1

s
r/2

◆
ds

=
1

�4
r

✓
2

r � 8
� 6

r � 6
+

6

r � 4
� 2

r � 2

◆

 c

�4
rr

4
,

as desired.
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Part (b). Using the integral expression (Equation B.2) p = q = 1 and the upper bound

(Equation B.3) on the determinant, we have

E
✓
a>Ua

a>⌃?a

◆
=

1

�(1)

1Z

0

|�t| · E
⇥
a>�tU�ta

⇤
dt

 1

�(1)

1Z

0

1

(1 + 2t�r)
r/2
E
⇥
a>�tU�ta

⇤
dt. (B.4)

We now bound the expectation term in (Equation B.4). Note that for a ⇠ N (0, Id), we

have E
⇥
a>Ba

⇤
= tr (B) for any symmetric matrix B. Therefore, we have

E
⇥
a>�tU�ta

⇤
= tr (�tU�t)

(i)
 k�tU�tk⇤
(ii)
 kUk⇤, (B.5)

where (i) the fact that tr (B)  kBk⇤ for any symmetric matrix B. Furthermore, (ii)

follows from Hölder’s inequality for Schatten-p norms, where we have that k�tU�tk⇤ 

k�tk2op · kUk⇤. Because �t is diagonal and the entries of �t are bounded between 0 and 1,

we bound the operator norm as k�tkop  1. Substituting (Equation B.5) to (Equation B.4),

we obtain

E
✓
a>Ua

a>⌃?a

◆
 kUk⇤ ·

1Z

0

1

(1 + 2t�r)
r/2

dt

. 1

�rr
· kUk⇤,

as desired.
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Proof of Lemma 5

By the assumption that the noise is upper bounded by ⌘
", we have y+ ⌘̄  y+⌘

". Therefore,

we have

E
�
�̄
2
�4

= E
✓

y + ⌘̄

a>⌃?a

◆4

 (y + ⌘
")4 · E

✓
1

a>⌃?a

◆4

(i)
.
✓

1

�rr

◆4

,

where step (i) applies Item (a) of Lemma 4.

B.4 Proof of Proposition 3

In the proof, we decompose the operator norm
����

1
n

nP
i=1

y eAi � 1
n

nP
i=1

h eAi,⌃?i eAi

����
op

from

(Equation 3.20) into individual terms and bound them separately. We define random matrices

Ā = �̄
2aa> =

y + ⌘̄

a>⌃?a
aa> (B.6)

and

eA = e�2aa> =

✓
y + ⌘̄

a>⌃?a
^ ⌧

◆
aa> (B.7)

as the sensing matrix formed with the m-averaged responses �̄ and truncated responses e�,

respectively.
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Step 1: decompose the error into five terms. We begin by adding and subtracting

multiple quantities as follows:

1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi =

1

n

nX

i=1

y eAi � E
h
y eA
i
+ E

h
y eA
i
� E

⇥
yĀ
⇤

+ E
⇥
yĀ
⇤
� E

h
h eA,⌃?i eA

i
+ E

h
h eA,⌃?i eA

i
(B.8)

� 1

n

nX

i=1

h eAi,⌃
?i eAi

(i)
=

1

n

nX

i=1

y eAi � E
h
y eA
i
+ E

h
y eA
i
� E

⇥
yĀ
⇤

+ E
⇥
hĀ,⌃?iĀ

⇤
� E

h
h eA,⌃?i eA

i
� E

⇥
⌘̄Ā
⇤

+ E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi, (B.9)

where step (i) is true by substituting y = hĀ,⌃?i� ⌘̄ to the term of E
⇥
yĀ
⇤
, and the fact that

the noise term ⌘̄ is zero-mean. By triangle inequality, we group the terms in (Equation B.9)

and bound the operator norm by

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

 y

�����
1

n

nX

i=1

eAi � E
h
eA
i�����

op| {z }
Term 1

+ y

���E
h
eA
i
� E

⇥
Ā
⇤���

op| {z }
Term 2

+
���E
⇥
hĀ,⌃?iĀ

⇤
� E

h
h eA,⌃?i eA

i���
op| {z }

Term 3

+

�����E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op| {z }

Term 4

+
��E
⇥
⌘̄Ā
⇤��

op| {z }
Term 5

. (B.10)
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In the remaining proof, we bound the five terms in (Equation B.10) individually. We first

discuss the nature of these five terms.

• Terms 1 and 4: These two terms characterize the difference between the empirical

mean of quantities involving eA and their true expectation (see Lemma 6 and Lemma 9).

In the proof, we show that the empirical mean concentrates around the expectation

with high probability, as a function of the number of sensing vectors n.

• Terms 2 and 3: These two terms characterize the difference in expectation introduced

by truncating Ā to eA (see Lemma 7 and Lemma 8). Hence, these two terms charac-

terize biases that arise from truncation. They diminish as ⌧ ! 1, because setting ⌧

to 1 is equivalent to no thresholding, and hence eA becomes identical to Ā. Since

expectations are considered, these two terms depend on the threshold ⌧ , but not the

number of sensing vectors n or the averaging parameter m.

• Term 5: Term 5 is a bias term that arises from the fact that the mean of the noise ⌘

conditioned on sensing matrix Ā is non-zero. We show that this bias scales like 1
m

(see Lemma 10) in terms of the averaging parameter m.

Putting these terms together, Terms 1 and 4 depend on n, Terms 2 and 3 depend on ⌧ , and

Term 5 depends on m. In Corollary 1, we set the values of ⌧ , n and m to balance these

terms.

Step 2: bound the five terms individually. In what follows, we provide five lemmas to

bound each of the five terms individually. In the proofs of the five lemmas, we rely on an

upper bound on the fourth moment of the m-sample averaged measurements �̄2. As shown

in Lemma 5 in Section B.3.5, for some absolute constant c, this fourth moment can be upper

bounded by a quantity that we denote M :

E[(�̄2)4]  M = c

✓
y
"

�rr

◆4

. (B.11)
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We also rely heavily on the following truncation properties relating the m-sample averaged

measurements �̄2 and truncated measurements �̃2:

�̃
2
i  ⌧ (TP1)

�̃
2
i  �̄

2
i (TP2)

�̄
2
i � �̃

2
i = (�̄2

i � �̃
2
i ) · 1{�̄2

i � ⌧}. (TP3)

The following lemma provides a bound for Term 1.

Lemma 6. Let eA1, . . . ,
eAn be i.i.d copies of a random matrix eA as defined in (Equation B.7).

There exists an absolute constant c > 0 such that for any t > 0, we have

�����
1

n

nX

i=1

eAi � E
h
eAi

i�����
op

 c

 r
M

1/2t

n
+

⌧ t

n

!

with probability at least 1� 2 · 9d · exp (�t).

The proof of Lemma 6 is provided in Section B.4. The next lemma provides an upper

bound for Term 2.

Lemma 7. Let Ā and eA be the random matrices defined in (Equation B.6) and (Equation B.7),

respectively. Then there exists an absolute constant c > 0 such that

���E
h
eA
i
� E

⇥
Ā
⇤���

op
 cM

1/2

⌧
.

The proof of Lemma 7 is provided in Section B.4. The following lemma provides an

upper bound for Term 3. Recall that the quantity y
" denotes y + ⌘

".

Lemma 8. Let Ā and eA be the random matrices defined in (Equation B.6) and (Equation B.7),

respectively. Then there exists an absolute constant c > 0 such that

���E
⇥
hĀ,⌃?iĀ

⇤
� E

h
h eA,⌃?i eA

i���
op

 c y
"
M

1/2

⌧
.
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The proof of Lemma 8 is provided in Section B.4. The following lemma provides an

upper bound for Term 4.

Lemma 9. Let eA1, . . . ,
eAn be i.i.d copies of a random matrix eA defined in (Equation B.7).

There exists an absolute constant c > 0 such that for any t > 0, we have

�����E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

 c y
"

 r
M

1/2t

n
+

⌧ t

n

!

with probability at least 1� 2 · 9d · exp (�t).

The proof of Lemma 9 is provided in Section B.4. We note that Terms 2 and 3 are bias

that result from shrinkage, but crucially are inversely dependent on the shrinkage threshold

⌧ . This fact allows us to set ⌧ so that the order of Terms 2 and 3 match the order of Terms 1

and 4.

The final lemma bounds Term 5, which is a bias that arises from the dependence of the

sensing matrix Ā on the noise ⌘.

Lemma 10. Let Ā be the random matrix defined in Equation (Equation B.6). Suppose that

⌃? has rank r with r > 2. Then there exists an absolute constant c > 0 such that

E
h��⌘̄Ā

��
op

i
 c

�rr

⌫
2
⌘

m
.

The proof of Lemma 10 is provided in Section B.4. We note that the bias scales with

the variance of the m-sample averaged noise ⌘̄, which scales inversely with m.

Step 3: combine the five terms. We set t = (log 9 + 1)d. Substituting the bounds from

Lemma 6– Lemma 10 back to (Equation B.10) and taking a union bound, we have that with
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probability at least 1� 4 exp(�d),

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

.
�
y
" + 1

�
 r

M
1/2d

n
+

d

n
⌧ +

M
1/2

⌧

!
+

1

�rr

⌫
2
⌘

m

(i)

. y
"

 
y
"

�rr

r
d

n
+

d

n
⌧ +

✓
y
"

�rr

◆2
1

⌧

!
+

1

�rr

⌫
2
⌘

m
,

where step (i) is true by substituting in the expression (Equation B.11) for M .

Proof of Lemma 6.

Let A 1
4
✓ Sd�1 be a 1

4 -covering of the d-dimensional unit sphere Sd�1 := {x 2 Rd : kxk2 =

1}. By a covering argument [6, Exercise 4.4.3], for any symmetric matrix U 2 Sd⇥d, its

operator norm is bounded by kUkop  2 supv2A 1
4

��v>Uv
��. Hence, we have

�����
1

n

nX

i=1

eAi � E
h
eA
i�����

op

 2 sup
v2A 1

4

�����v
>

 
1

n

nX

i=1

eAi � E
h
eA
i!

v

�����

= 2 sup
v2A 1

4

�����
1

n

nX

i=1

v> eAiv � E
h
v> eAv

i����� . (B.12)

We invoke Bernstein’s inequality. We first show that the Bernstein condition holds. Namely,

we show that for each integer p � 2, we have that for any unit vector v 2 Rd,

E
���v> eAv

���
p

 p!

2
u1u

p�2
2 , (B.13)

where u1 = c1M
1
2 and u2 = c2⌧ for some universal positive constants c1 and c2. Given

the Bernstein condition (Equation B.13), we then apply Bernstein’s inequality to bound

(Equation B.12).

Proving the Bernstein condition (Equation B.13). We fix any unit vector v 2 Rd. Since

eA = e�2aa>, we have v> eAv = e�2(v>a)2. Recall that the random vector a is distributed

as a ⇠ N (0, Id). Since v is a unit vector, it follows that v>a ⇠ N (0, 1). Denote by
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G ⇠ N (0, 1) a standard normal random variable. For any integer p � 2, we have

E
���v> eAv

���
p

= E
�
e�2
G

2
�p (i)

 ⌧
p�2E

h�
e�2
�2

G
2p
i

(ii)
 ⌧

p�2 · E
h�
�̄
2
�2

G
2p
i

(iii)
 ⌧

p�2
⇣
E
h�
�̄
2
�4i · E

⇥
G

4p
⇤⌘1/2

(iv)
 ⌧

p�2
�
M · E

⇥
G

4p
⇤�1/2

, (B.14)

where steps (i) and (ii) follow from (Equation TP1) and (Equation TP2), respectively;

step (iii) follows from Cauchy–Schwarz inequality; and step (iv) follows upper bound-

ing the fourth moment of �̄2 with the quantity M from (Equation B.11).

Note that since G is standard normal, by definition G
2 follows a Chi-Square distribution

with 1 degree of freedom, and hence sub-exponential. By Lemma 2 in Section B.3.2, there

exists some constant c > 0 such that we have (E [(G2)p])
1/p  cp for all p � 1. Hence, we

have (E [G4p])
1/2p  2cp and

�
E
⇥
G

4p
⇤�1/2  (2cp)p =

⇣
p

e

⌘p
· (2ec)p

(i)
< p! · (2ec)p (B.15)

where step (i) is true by Stirling’s inequality that for all p � 1,

p! >
p
2⇡p

⇣
p

e

⌘p
e

1
12p+1 >

⇣
p

e

⌘p
.

Substituting (Equation B.15) back to (Equation B.14) and rearranging terms completes the

proof of the Bernstein condition (Equation B.13).

Applying Bernstein’s inequality to bound (Equation B.12). By Bernstein’s inequality

(see Lemma 3), given condition (Equation B.13), we have that for any unit vector v 2 Rd
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and any t > 0,

P
 �����

1

n

nX

i=1

v> eAiv � E
h
v> eAv

i����� � 2

 r
c1M

1/2t

n
+

c2⌧ t

n

!!
 2 exp (�t) . (B.16)

By [6, Corollary 4.2.13], the cardinality of the covering set A 1
4

is bounded above by 9d.

Therefore, taking a union bound on (Equation B.16), we have

P

0

@ sup
v2A 1

4

�����
1

n

nX

i=1

v> eAiv � E
h
v> eAv

i����� � 2

 r
c1M

1/2t

n
+

c2⌧ t

n

!1

A  2 · 9d · exp (�t) .

(B.17)

Substituting in (Equation B.12) to (Equation B.17), for any t > 0, we have

P

0

@
�����
1

n

nX

i=1

eAi � E
h
eA
i�����

op

.
r

M
1/2t

n
+

⌧ t

n

1

A � 1� 2 · 9d · exp(�t),

as desired.

Proof of Lemma 7

By definition of the operator norm, we have

���E
h
eA
i
� E

⇥
Ā
⇤���

op
= sup

v2Sd�1

���v>
⇣
E
⇥
Ā
⇤
� E

h
eA
i⌘

v
���.

We fix any v 2 Sd�1, and bound v>
⇣
E
⇥
Ā
⇤
� E

h
eA
i⌘

v. Similar to the proof of Lemma 6,

we note that v>a ⇠ N (0, 1) and denote the random variable G ⇠ N (0, 1). Substituting in
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the expression for sensing matrices Ā and eA, we have

���v>
⇣
E
⇥
Ā
⇤
� E

h
eA
i⌘

v
��� =

��v>E
⇥
�̄
2aa> � e�2aa>⇤v

��

(i)
= E

⇥�
�̄
2 � e�2

�
G

2
⇤

(ii)
= E

⇥�
�̄
2 � e�2

�
G

2 · 1{�̄2 � ⌧}
⇤

 E
⇥
�̄
2
G

2 · 1{�̄2 � ⌧}
⇤

(iii)

⇣
E
⇥
(�̄2

G
2)2
⇤
· E
⇥
1{�̄2 � ⌧}

⇤ ⌘1/2

(iv)

⇣
E
⇥
|�̄2|4

⇤
· E
⇥
|G2|4

⇤ ⌘1/4⇣
P
�
�̄
2 � ⌧

� ⌘1/2

, (B.18)

where where step (i) is true because �̄
2 � e�2 from to (Equation TP2), step (ii) is true

due to (Equation TP3), and steps (iii) and (iv) follow from Cauchy–Schwarz inequality.

We proceed by bounding each of the terms in (Equation B.18) separately. First, we can

upper bound the fourth moment E [|�̄2|4] by the quantity M from (Equation B.11). Second,

G
2 is a sub-exponential random variable. By Lemma 2 in Section B.3.2, we have that

E [|G2|4]1/4  c for some constant c. It remains to bound the term
⇣
P (�̄2 � ⌧)

⌘1/2

. We

have

P
�
�̄
2 � ⌧

� (i)
 E |�̄2|2

⌧ 2

(ii)
 (E |�̄2|4)1/2

⌧ 2

(iii)
 M

1/2

⌧ 2
,

where step (i) follows from Markov’s inequality, step (ii) follows from Cauchy–Schwarz

inequality, and step (iii) follows from the fourth moment bound on the averaged scaling �̄
2.

Putting everything together back to (Equation B.18), we have

���v>
⇣
E
⇥
Ā
⇤
� E

h
eA
i⌘

v
��� . M

1/2

⌧
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for any vector v 2 Sd�1. Therefore,

���E
h
eA
i
� E

⇥
Ā
⇤���

op
. M

1/2

⌧
,

as desired.

Proof of Lemma 8

Substituting in the definitions Ā = �̄
2aa> and eA = e�2aa>, we have

hĀ,⌃?iĀ� h eA,⌃?i eA =
�
�̄
4 � e�4

� �
a>⌃?a

�
aa>

.

Therefore, our goal is to bound the operator norm

����̄4 � e�4
� �

a>⌃?a
�
aa>��

op
= sup

v2Sd�1

��vT
�
�̄
4 � e�4

� �
a>⌃?a

�
aa>v

��.

Similar to the proof of Lemma 7, we fix any vector v 2 Sd�1. Again, note that

v>a ⇠ N (0, 1) and denote G ⇠ N (0, 1). We have

��v>E
⇥�
�̄
4 � e�4

� �
a>⌃?a

�
aa>⇤v

�� (i)
= E

⇥�
�̄
4 � e�4

� �
a>⌃?a

�
G

2
⇤

= E
⇥�
�̄
2 + e�2

� �
�̄
2 � e�2

� �
a>⌃?a

�
G

2
⇤

(ii)
 E

⇥
2�̄2

�
�̄
2 � e�2

� �
a>⌃?a

�
G

2
⇤

(iii)
= 2E

⇥
(y + ⌘̄)

�
�̄
2 � e�2

�
G

2
⇤

(iv)
 2(y + ⌘

")E
⇥�
�̄
2 � e�2

�
G

21{�2 � ⌧}
⇤

where steps (i) and (ii) are true because �̄2 � e�2 from (Equation TP2), step (iii) follows from

the definition �̄
2 = y+⌘̄

a>⌃?a , and step (iv) follows from (Equation TP3) and the definition of

⌘
" as the upper bound on the noise ⌘.

The rest of the proof follows the exact steps of the proof of Lemma 7 in Section B.4.
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Therefore, we have the bound

��E
⇥�
�̄
4 � e�4

� �
a>⌃?a

�
aa>⇤��

op
. y

"
M

1/2

⌧
,

as desired.

Proof of Lemma 9

The proof follows the steps as in the proof of Lemma 6, and we describe the difference of

the two proofs. We again apply Bernstein’s inequality.

Proving a Bernstein condition. We prove a Bernstein condition with u1 = c1(y + ⌘
")2

and u2 = c2(y + ⌘
")⌧ . Namely, for every integer p � 2, we have (cf. (Equation B.13) in

Lemma 6)

E
h���v>h eA,⌃?i eAv

���
pi

 p!

2
u1u

p�2
2 . (B.19)

To show (Equation B.19), we plug in eA = e�2aa> and have

E
���v>h eA,⌃?i eAv

���
p

= E
�
e�2a>⌃?a

�p ·
���v> eAv

���
p

(i)
 E

�
�̄
2a>⌃?a

�p ·
���v> eAv

���
p

(ii)
= E (y + ⌘̄)p ·

���v> eAv
���
p

(iii)
 (y + ⌘

")p · E
���v> eAv

���
p

, (B.20)

where step (i) follows from (Equation TP2), step (ii) follows from the definition �̄
2 = y+⌘̄

a>⌃?a ,

and step (iii) follows from the definition of ⌘" as the upper bound on the noise ⌘. Substi-

tuting in (Equation B.13) from Lemma 6 to bound the term E
���v> eAv

���
p

in (Equation B.20)

completes the proof of the Bernstein condition (Equation B.19).
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Applying Bernstein’s inequality. The rest of the proof follows in the same manner as the

proof of Lemma 6 in Section B.4, with an additional factor of (y + ⌘
"). We have

�����E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

. y
"

 r
M

1/2t

n
+

⌧ t

n

!

with probability at least 1� 2 · 9d · exp (�t), as desired.

Proof of Lemma 10

Recall that by definition Ā = �̄
2aa> = y+⌘̄

a>⌃?aaa
>. We have

��E
⇥
⌘̄Ā
⇤��

op
=

����E

⌘̄(y + ⌘̄)

aa>

a>⌃?a

�����
op

=

����E [⌘̄(y + ⌘̄)] · E


aa>

a>⌃?a

�����
op

=
�
2
⌘

m
·
����E


aa>

a>⌃?a

�����
op

. (B.21)

To bound the operator norm term in (Equation B.21), we apply Item (b) of Lemma 4 in

Section B.3.4. For any matrix U , we have

E

a>Ua

a>⌃?a

�
. 1

�rr
kUk⇤. (B.22)

Note that aa>

a>⌃?a is symmetric positive semidefinite, so we have

����E


aa>

a>⌃?a

�����
op

= sup
v2Sd�1

����v
>E


aa>

a>⌃?a

�
v

����

= sup
v2Sd�1

E

a>(vv>)a

a>⌃?a

�

(i)
. 1

�rr
sup

v2Sd�1

kvv>k⇤

(ii)
=

1

�rr
, (B.23)
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where step (i) is true by substituting in (Equation B.22) with U = vvT , and step (ii) is

true because v is unit norm, and hence kvv>k⇤ = 1. Substituting (Equation B.23) back

to (Equation B.21), we have

��E
⇥
⌘̄Ā
⇤��

op
. 1

�rr
·
⌫
2
⌘

m
,

as desired.

B.5 Proof of Proposition 4

We analyze the term 1
n

nP
i=1

h eAi,Ui2 from (Equation 3.21). Recall from the definition of eA

that for any i = 1, . . . , n,

eAi = e�2
i aia

>
i =

✓
y + ⌘̄i

a>
i ⌃

?ai
^ ⌧

◆
aia

>
i ,

so we have

h eAi,Ui2 =
✓

y + ⌘̄i

a>
i ⌃

?ai
^ ⌧

◆2 �
a>
i Uai

�2
. (B.24)

From (Equation B.24), we have that for any matrix U , the term
nP

i=1
h eAi,Ui2 is nondecreasing

in ⌧ when ⌧ > 0. Defining a random matrix

eA⌧ 0 :=

✓
y + ⌘̄

a>⌃?a
^ ⌧

0
◆
aa>

, (B.25)

for any ⌧
0 2 (0, ⌧ ], we have

1

n

nX

i=1

h eAi,Ui2 � 1

n

nX

i=1

h eA⌧ 0

i ,Ui2, (B.26)
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where for every i = 1, . . . , n, matrix eA⌧ 0
i is formed with the same realizations of random

quantities ai and ⌘̄i as eAi. The two matrices only differ in choice of truncation threshold:

⌧
0 instead of ⌧ . As a result, for the rest of the proof, we lower bound 1

n

nP
i=1

h eA⌧ 0
i ,Ui2 for an

appropriate choice of ⌧ 0 to be specified later. To proceed, we use a small-ball argument [206,

207] based on the following lemma.

Lemma 11 ([207, Proposition 5.1], adapted to our notation). Let X1, . . . ,Xn 2 Rd⇥d be

i.i.d. copies of a random matrix X 2 Rd⇥d. Let E ⇢ Rd⇥d be a subset of matrices. Let

⇠ > 0 and Q > 0 be real values such that for every matrix U 2 E, the marginal tail

condition holds:

P (|hX,Ui| � 2⇠) � Q. (B.27)

Define the Rademacher width as

W := E
"
sup
U2E

1

n

nX

i=1

"ihXi,Ui
#
,

where "1, . . . , "n are i.i.d. Rademacher random variables independent of {Xi}i2[n]. Then

for any t > 0, we have

inf
U2E

 
1

n

nX

i=1

hXi,Ui2
!1/2

� ⇠(Q� t)� 2W.

with probability at least 1� exp
⇣
�nt2

2

⌘
.

Recall the error set E defined in (Equation 3.17). Because the claim (Equation 3.21) is

invariant to scaling, it suffices to prove it for kUkF = 1. Correspondingly, we define the set
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E as

E = E \ {U 2 Rd⇥d : kUkF = 1}

= {U 2 Sd⇥d : kUkF = 1, kUk⇤  4
p
2r}. (B.28)

We invoke Lemma 11 with set E defined above, Xi = eA⌧ 0
i , ⇠ = c1

2

⇣
µy

tr(⌃?) ^ ⌧
0
⌘

, and

Q = c2, where µy is the median of ⌘̄ and c1 and c2, are constants to be specified later. The

rest of the proof is comprised of two steps. We first verify that our choices for ⇠ and Q

are valid for establishing the marginal tail condition (Equation B.27). We then bound the

Rademacher width W above. The following lemma verifies our choices for ⇠ and Q.

Lemma 12. Consider any ⌧
0 2 (0, ⌧ ]. There exist absolute constants c1, c2 > 0 such that

for every U 2 E, we have

P
✓���h eA⌧ 0

,Ui
��� � c1

✓
µy

tr (⌃?)
^ ⌧

0
◆◆

� c2.

The proof of Lemma 12 is presented in Section B.5. We now turn to the second step of

the proof, which is bounding the Rademacher width W . The next lemma characterizes this

width.

Lemma 13. Consider any ⌧
0 2 (0, ⌧ ]. Let eA⌧ 0

1 , . . . ,
eA⌧ 0
n 2 Rd⇥d be i.i.d. copies of

the random matrix eA⌧ 0 2 Rd⇥d defined in (Equation B.25). Let E be the set defined in

(Equation B.28). Then, there exists some absolute constants c1 and c2 such that if n � c1d,

then we have

E
"
sup
U2E

1

n

nX

i=1

"ih eA⌧ 0

i ,Ui
#
 c2⌧

0

r
rd

n
.

The proof of Lemma 13 is presented in Section B.5. Lemma 12 establishes the marginal

tail condition for Lemma 11, and Lemma 13 upper bounds the Rademacher width. We now

invoke Lemma 11 and substitute in the upper bound for the Rademacher width W . For some
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constant c4, if n � c4d, we have that with probability at least 1� exp
⇣
�nt2

2

⌘
,

inf
U2E

 
1

n

nX

i=1

h eAi,Ui2
!1/2

(i)
� inf

U2E

 
1

n

nX

i=1

h eA⌧ 0

i ,Ui2
!1/2

� c1

2

✓
µy

tr (⌃?)
^ ⌧

0
◆
(c2 � t)� c3⌧

0

r
rd

n
,

where step (i) is true due to the monotonicity property (Equation B.26). We set ⌧ 0 = µy

tr(⌃?) ,

where recall that µy is the median of the random quantity y + ⌘̄. By the assumption

⌧ � µy

tr(⌃?) , this choice of ⌧ 0 satisfies ⌧ 0  ⌧ . Setting t = c2
2 , we have that with probability at

least 1� exp
⇣
� c22n

8

⌘
,

inf
U2E

1

n

 
nX

i=1

h eA⌧ 0

i ,Ui2
!1/2

� c1c2

4

µy

tr (⌃?)
� c3

µy

tr (⌃?)

r
rd

n
.

Recall from the definition of E (Equation B.28) that kUkF = 1. As a result, if n �

max

⇢⇣
4c3
c1c2

⌘2
, c4

�
rd, we have

inf
U2E

1

n

nX

i=1

h eAi,Ui2 �
✓
c1c2

4

µy

tr (⌃?)

◆2

kUk2F

with probability at least 1� exp
⇣
� c22n

8

⌘
. We conclude by setting L =

�
c1c2
4

�2, c = c22
8 , and

C = max

⇢⇣
4c3
c1c2

⌘2
, c4

�
in Proposition 4.

Proof of Lemma 12

We fix any U 2 E. Recall that µy denotes the median of y + ⌘̄. Let G be the event that

y + ⌘̄ � µy, which occurs with probability 1
2 . For any ⇠ > 0, because the averaged noise ⌘̄
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and sensing vector a are independent, we have

P
⇣���h eA⌧ 0

,Ui
��� � ⇠

⌘
(i)
= P

✓✓
y + ⌘̄

a>⌃?a
^ ⌧

0
◆
·
��haa>

,Ui
�� � ⇠

◆

= P
✓✓

y + ⌘̄

a>⌃?a
^ ⌧

0
◆
·
��haa>

,Ui
�� � ⇠

���� G
◆
· P (G)

=
1

2
P
✓✓

y + ⌘̄

a>⌃?a
^ ⌧

0
◆
·
��haa>

,Ui
�� � ⇠

���� G
◆

(ii)
� 1

2
P
✓✓

µy

a>⌃?a
^ ⌧

0
◆
·
��haa>

,Ui
�� � ⇠

◆
, (B.29)

where step (i) is true by plugging in the definition of eA⌧ 0 , and step (ii) is true by the definition

of the event G. We proceed by bounding the terms in (Equation B.29) separately.

Lower bound on
��haa>

,Ui
��. We use the approach from [115, Section 4.1]. By Paley-

Zygmund inequality,
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We now analyze the terms in (Equation B.30). As noted in [115, Section 4.1], there exists

some constant c1 > 0 such that for any matrix U with kUkF = 1,

E
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Note that by the definition of the set E, every matrix U 2 E satisfies kUkF = 1. Utilizing

inequalities (Equation B.30) and (Equation B.31), there exists positive constant c2 > 0 such

that

P
✓��haa>

,Ui
�� � 1

2

◆
� c2. (B.32)

143



Upper bound on a>⌃?a. By Hanson-Wright inequality [208, Theorem 1.1], there exist

some positive absolute constants c3 and c4 such that for any t > 0, we have

P
⇣
a>⌃?a  c3

⇣
tr (⌃?) + k⌃?kF

p
t+ k⌃?kop t

⌘⌘
� 1� 2 exp (�c4t) .

We set t = � 1
c4
log( c24 ) so that 2 exp (�c4t) =

c2
2 . Since ⌃? is symmetric positive semidefi-

nite, we have

k⌃?kF  tr (⌃?) and k⌃?kop  tr (⌃?)

As a result, we have that there exists some constant c5 > 0 such that

P
⇣
a>⌃?a  c5 tr (⌃
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⌘
� 1� c2

2
. (B.33)

Substituting the two bounds back to (Equation B.29). By a union bound of (Equation B.32)

and (Equation B.33), we have
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Combining (Equation B.34) and (Equation B.29), and redefining constant c2 appropriately,

we have

P
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as desired.
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Proof of Lemma 13

We begin by noting that for any matrix U 2 E,
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where step (i) follows from Hölder’s inequality, and step (ii) follows from the fact that

kUk⇤  4
p
2r from the definition of the set E. It remains to bound the expectation

of the operator norm in (Equation B.35). We follow the standard covering arguments in

[209, Section 5.4.1], [207, Section 8.6], [115, Section 4.1], with a slight modification to

accommodate the bounded term
⇣

y+⌘̄i
a>
i ⌃?ai

^ ⌧
0
⌘

that appears in each of the matrices eA⌧ 0
i . As

a result, there exist universal constants c1 and c2 such that if n satisfies n � c1d, then we

have

E

2

4
�����
1

n

nX

i=1

"i
eA⌧ 0

i

�����
op

3

5  c2⌧
0

r
d

n
.

We conclude by re-defining c2 appropriately.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

C.1 Experimental setup

C.1.1 Dataset details

In our experiments, we utilize the following datasets. We report the licenses for all datasets

that publicly list them.

• CelebAMask-HQ [191]. License: non-commercial research and educational purposes.

• Car-Parts [192].

• DeepFashion-MultiModal [194, 193]. License: non-commercial research purposes.

• SHHQ [189]. License: CC0 and free for research use.

• Cityscapes [195]. License: on-commercial research and educational purposes.

We also utilize pre-trained StyleGAN2 and ReStyle models. In the face and car domain,

these models were trained on the following datasets:

• FHHQ [47]. License: Creative Commons BY-NC-SA 4.0 license by NVIDIA Corpo-

ration.

• LSUN [210].

• Stanford Cars [211]. License: non-commercial research and educational purposes.

To make the DeepFashion-MultiModal segmentation masks compatible with StyleGAN-

Human, we first used the segmentation mask to determine the background for each image

and set the background to white. We then re-sized each image to the same size SHHQ

images.
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C.1.2 Segmentation mask class collapse

Consistent with prior works [166], we collapse the original labels in each dataset into a

smaller number of labeled parts. For CelebAMask-HQ dataset, we remove any distinction

between left/right in a number of parts (e.g., ears, eyes, eyebrows). Furthermore, we form

one mouth part consisting of upper/lower lips and mouth. Finally, we collapse all accessories

and clothing into background. See Table C.1a for exact class collapse mapping. In long-tail

experiments, we un-collapse the relevant long-tail classes (glasses and hats) and consider

them separate classes.

For the Car-Parts dataset, we remove any distinction between left/right and front/back

for parts such as doors, lights, bumpers, and mirrors. We also merge trunks and tailgates to

be the same class. See Table C.1b for exact class collapse mapping.

For DeepFashion-MultiModal, we consider two degrees of class collapse. In the first, we

consider the following ten classes, with original classes included in parentheses: tops (tops

and ties), outerwear, dresses (dresses, skirts, rompers), bottoms (pants, leggings, belts), face

(face, glasses, earrings), skin (skin, neckwear, rings, wrist accessories, gloves, necklaces),

footwear (shoes and socks), bags, and hair (hair and headwear). In the second, we further

collapse the classes by including outerwear in tops and bags as background. See Table C.1c

and Table C.1d for exact class collapse mappings.

For Cityscapes, we utilize the eight groups listed on the Cityscapes official website as

our classes, with slight modifications. We consider parts labeled sidewalk, parking, and rail

track as a part of the void class. See Table C.1f for exact class collapse mapping.

C.1.3 Training setup

All experiments were run on V100 GPUs using Amazon Web Services (AWS) P3dn.24xlarge

instances. Each MLP in the label generator ensemble was trained with the same parameters

for all domains and tasks. Each MLP was trained for ⇠ 4 epochs via the Adam optimizer

[212] with learning rate 0.001 and batch size 64. For all results presented in Table 5.1 and
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Collapsed
label (8) CelebAMask-HQ original labels

Background Background (0), hat (14), earring (15),
necklace (16), neck (17), clothes (18)

Skin Skin (1)
Nose Nose (2)
Eyes Left eye (3), right eye (4), glasses (5)
Eyebrows Left eyebrow (6), right eyebrow (7)
Ears Left ear (8), right ear (9)
Mouth Mouth (10), upper lip (11), lower lip (12)
Hair Hair (13)

(a)

Collapsed
label (10) Car-Parts original labels

Background Background(0)
Bumper Back bumper (1), front bumper (7)
Back window Back glass (3)

Doors Back left door (3), back right door (5),
front left door (9), front right door (11)

Lights Back left light (4), back right light (6),
front left light (10), front right light (12)

Windshield Front glass (8)
Hood Hood (13)
Mirror Left mirror (14), right mirror (15)
Trunk Tailgate (16), trunk (17)
Wheel Wheel (18)

(b)

Collapsed
label (10) DeepFashion-MM original labels

Background Background(0)
Top Top (1), tie (23)
Outerwear Outerwear (2)
Dress Skirt (3), dress (4), romper (21)
Bottoms Pants (5), leggings (6), belt (10)
Face Glasses (8), face (14), earring (22)

Skin
Neckwear (9), skin (15), ring (16),
Wrist accessories (17), gloves (19),
necklace (20)

Footwear Footwear (11), socks (18)
Bags Bags (12)
Hair Headwear (7), hair (13)

(c)

Collapsed
label (8) DeepFashion-MM original labels

Background Background(0), bags(12)
Top Top (1), tie (23), outerwear (2)
Dress Skirt (3), dress (4), romper (21)
Bottoms Pants (5), leggings (6), belt (10)
Face Glasses (8), face (14), earring (22)

Skin
Neckwear (9), skin (15), ring (16),
Wrist accessories (17), gloves (19),
necklace (20)

Footwear Footwear (11), socks (18)
Hair Headwear (7), hair (13)

(d)

(e) Mapping from collapsed class label to original class label in faces (a), cars (b), full-body
human poses (c), (d), and urban driving scenes (e) domains. Original class numbers provided for
each original class label name in parentheses.

Collapsed label (8) Cityscapes (Fine annotations) original labels

Void Unlabeled (0), ego vehicle (1), rectification border (2), out of ROI (3), static (4), dynamic (5),
ground (6), sidewalk (8), parking (9), rail track (10)

Road Road (7)
Construction Building (11), wall (12), fence (13), guard rail (14), bridge (15), tunnel (16)
Object pole (17), polegroup (18), traffic light (19), traffic sign (20)
Nature Vegetation (21), terrain (22)
Sky Sky (23)
Human Person (24), rider (25)

Vehicle UCar (26), truck (27), bus (28), caravan (29), trailer (30), train (31), motorcycle (32),
bicycle (33), license plate (-1)

(f)
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Table 5.2, the labeled images used to train the label generator were chosen at random. For

long-tail experiments (Section 5.4.5), images with the long-tail part were identified. Then,

the labeled training images were selected at random from the identified images.

Prior to training the downstream network, we filter out the top 10% most uncertain syn-

thetically generated images, except for the long-tail experiments. No filtering is performed

for long-tail experiments to ensure that images with long-tail parts, which are more likely to

be “uncertain”, are included in the training set for the downstream network. To train the

downstream network, we again utilize the Adam optimizer [212] with learning rate 0.001

and batch size 64. We train ReStyle [173] on the set of labeled training images randomly

selected from SHHQ [194, 213] and Cityscapes [195] for the full-body human poses and

urban driving scene domains, respectively. We use default settings found in the ReStyle

repository.

C.1.4 GAN inversion setup

For the full-body human poses and urban driving scenes domains, we train ReStyle with the

candidate training examples. Our framework only uses GAN inversion to obtain latent codes

for training the label generator. Training on the candidate training examples thus ensures

that ReStyle optimally reconstructs these latent codes. For faces and cars, this procedure is

not necessary because ReStyle optimally reconstructs the latent codes of training examples

without training. For the optimization-based finetuning, we utilize creg = 0.5 and �`2 = 0.1

for all domains. We run 300 optimization steps for the car domain, 500 iterations for the

face and urban driving scenes domains, and 2,000 iterations for the human full-body poses

domain. See Section C.2 for ablations on GAN inversion optimization steps.

C.1.5 Label generator architecture

For all experiments, we utilize an ensemble of two layer MLPs with ReLU activations and

batch normalizations for our label generator. We sweep the combination of layer widths and
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report the performance associated with the best performing combination for each domain

and number of labeled training images. See Section C.2 for ablations on layer widths. Below,

we report the combination of label generator sizes that produced the best performance. (x, y)

indicates that a network with first hidden layer of width x and second hidden layer of width

y was used.

Faces For segmentation, we utilize layer sizes of (256, 32) for 50 training images and

(512, 64) for 16 training images. For keypoints, we utilize (512, 32) for PCK-0.1, PCK-0.05,

and PCK-0.02 with 50 training images. For 16 training images, we utilize (512, 64) for

PCK-0.1 and (512, 32) for PCK-0.05 and PCK-0.02.

Cars For segmentation, we utilize (512, 256) for both 50 training images and 16 training

images.

Full-body human poses For segmentation, we utilize (1024, 32) and (2048, 64) for 50

training images in the 8 class and 10 class settings and (2048, 64) and (2048, 128) for 16

training images in the 8 class and 10 class settings. For keypoints, we utilize (512, 128),

(256, 128), and (128, 64) for PCK-0.1, PCK-0.05, and PCK-0.02 with 50 training images.

For 16 training images, we utilize (512, 256) for all three PCK thresholds.

Urban driving scenes For segmentation, we utilize (512, 64) for both 50 and 16 training

images. For depth maps, we utilize (512, 256) for both 50 and 16 training images.

C.1.6 Keypoint heatmap regression

For keypoint detection experiments, we utilize a heatmap regression setup. Given an image

(of size H ⇥W ) and a corresponding list of K keypoints, we form a corresponding pixel-

wise label for the image as follows. For each of the K keypoints, we create a H ⇥ W

sized heatmap. The values of the heatmap are the values of the density of a standard two-
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dimensional Gaussian centered at the location of the keypoint with variance �. We further

scale the values of the heatmap by 10, so that the maximum value of the heatmap is 10. We

find through hyperamater tuning that � = 25 works well for full body while � = 5 works

well for faces. With faces, we use � = 5 for the original sized CelebA images and then

resize the mask to be of CelebAMask-HQ resolution.

The label generator and downstream task are tasked with predicting a vector of K values

for each pixel. At test time, after predicting K heatmaps corresponding to the K keypoints,

we take the location of the maximum element of each heatmap as the location of the keypoint.

When computing the PCK metric, we only compute if a keypoint was correctly detected

for visible keypoints. Information on if a particular keypoint is visible or not is provided in

DeepFashion-MM, but not for CelebA.

C.2 Ablation studies

In this section, we present ablation studies that shed insights on various hyperparameters.

Hypercolumn dimension We experiment with keeping only a subset of the channels from

the style block intermediate outputs from the lower resolution layers. In the StyleGAN2

generator, the first 10 style block outputs (which range from 4⇥4 to 128⇥128 resolutions)

each contain 512 channels, comprising 5120 of the 6080 total channels. We quantify

the effect of keeping zero or the first 64, 128, and 256 channels on the downstream task

performance in the face domain. As shown in Figure C.1a, in the face domain, while

utilizing only higher resolution layers degrades performance considerably, we can remove

256 of the 512 channels for the first 10 style blocks with very minimal loss in performance.

This results in a hypercolumn dimension 3520, which is a 42% reduction compared to the

original dimension of 6080. In our experiments, we utilize the full hypercolumn dimension,

but note that due to memory considerations, utilizing a subset of the dimensions is feasible

from a performance trade-off perspective.
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Number of MLPs in label generator ensemble We experiment with the number of

MLPs in the ensemble. We train 1, 3, 5, 7, and 10 MLPs to generate labels. As seen in

Figure C.1b, in the face domain, using only 1 network results in a performance drop, but

using anywhere from 3 to 7 MLPs results in performance meeting or even exceeding the

performance of using all 10 MLPs. In our experiments, we utilize 10 networks to provide

for more robustness in more difficult domains, such as full-body humans and urban driving

scenes.

Size of MLPs in label generator ensemble We investigate whether network layer widths

impact downstream performance. The original DatasetGAN framework utilizes 3-layer

MLPs with intermediate dimensions of 128 and 32. We explore 7 additional combinations

of layer widths: (256, 32), (256, 64), (256, 128), (512, 32), (512, 64), (512, 128), and

(512, 256). As seen in Table C.3, in the face domain, for the face domain, downstream

performance does not necessarily increase with increasing network widths, but remains

relatively stable.

Number of labeled training images We characterize the effects of the number of labeled

training images has on downstream task performance in the car domain. As emphasized

throughout Chapter 5, a notable benefit HandsOff has over comparable frameworks is the

ability for practitioners to increase the number of labeled training images without incurring

costs of manual annotations. As observed in Figure C.1c, in the car domain, the downstream

performance generally increases as the number of training images is increased, but this

increase is not non-decreasing. One explanation for why is that the composition of the

training data may have a larger impact on downstream performance than simply the number

of images. This fact is explored in the long-tail experiments presented in Chapter 5. In our

experiments, we report the performance with 16 labeled training images, which is the same

number of training images in comparable baselines. We also report the performance of 50

labeled training images to highlight our framework’s ability to accommodate more than a
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3⇥ increase in training data.

Reconstruction quality We examine the effects of GAN inversion reconstruction quality

on downstream performance. Specifically, we vary the number of optimization refinement

steps on the ReStyle-produced latent code. To quantitatively assess reconstruction quality,

we use the value of the loss in the refinement step. As seen in Table C.4, in the car domain,

as the number of optimization iterations increases, the downstream performance generally

increases. However, this increase does not scale directly with reconstruction loss.

Size of generated dataset We characterize the effects of the size of the generated dataset

on downstream performance. For each generated dataset size, we filter out the top 10%

uncertain images. As seen in Figure C.1d, in the car domain, as the size of the dataset grows,

the downstream performance generally increases. However, the performance improvement

has diminishing returns, as performance improvement is most notable moving from 5,000

to 10,000 generated image-label pairs. As a result, in our experiments, we utilize dataset

sizes of 10,000 to strike a balance between performance and time and computation needed

to generate larger datasets.

Percent of generated dataset filtered We experiment with the percent of the dataset

that is filtered out. To do so, we generate a dataset of size 10, 000 and then filter out

varying percentages. As seen in Figure C.1e, in the car domain, employing filtering results

in relatively similar performances. Therefore, in our experiments, we utilize a filtering

percentage of 10% to strike a balance between removing highly uncertain labels and the

number of image-label pairs that are used to train the downstream model.

Cityscapes downstream network finetuning. We report the effects of finetuning the

trained downstream model with the original 16 or 50 labeled images used to train the label

generator. As seen in Table C.5, finetuning results in increases in performance, indicating
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that finetuning overcomes the difficulty in producing high quality in-distribution images

with a GAN.

Transfer learning pretrain dataset choice. We report the performance of the transfer

learning baseline in the face and car domain when pretrained on ImageNet versus pretrained

on ImageNet and COCO. As seen in Table C.6, pretraining on COCO in addition to ImageNet

results in mild performance gains.

C.3 Additional results

C.3.1 Reconstructed image alignment

An underlying assumption of the HandsOff framework is that the reconstructed images

resulting from GAN inversion align well semantically with the original labels. In this section,

we present visual examples of reconstructed image alignment with original labels.

In the face domain, we utilize ReStyle for the encoder initialization and use 500 steps of

optimization to refine the images. As seen in Figure C.2a, the reconstructions align very

well with the semantic segmentation masks from CelebAMask-HQ.

In the car domain, we utilize ReStyle for the encoder initialization and use 300 steps of

optimization to refine the images. As seen in Figure C.2b, the output of the ReStyle captures

the overall scene very well, but struggles in preserving fine details, as shown in red circles.

By utilizing the optimization based refinement step, we are able to correct for these small

details. These refined images align much better with the original segmentation masks, as

shown in Figure C.2b.

C.3.2 Face domain few-shot segmentation results

In this section, we compare the downstream few-shot segmentation performance of HandsOff

against self-supervised approaches and diffusion-model based approaches. Namely, we

compare against DDPM-Segment [214], DatasetDDPM[214], MAE[215], and SwAV[216].
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DatasetDDPM and DDPM-Segment both utilize denoising diffusion probabilistic models

(DDPMs). DDPM-Segment extracts intermediate network outputs from various time steps

of the denoising process to form pixel-level image representations, akin to the hypercolumn

representations formed from StyleGAN2 in HandsOff. Then, an ensemble of linear classi-

fiers is trained to output a pixel-level label. DDPM-Segment is different from HandsOff in

that it does not generate synthetic datasets. Instead, at inference time, the ensemble of linear

classifiers is applied to the pixel-level representation of an image. DatasetDDPM simply

replaces the GAN in DatasetGAN with a DDPM, forming pixel-level representations in the

same manner as DDPM-Segment. For MAE and SwAV, we utilize the approach of [214]

and extract intermediate layer outputs to form image representations of real images. We

then train a segmenter to map from these representations to label outputs.
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Table C.2: Segmentation task performance in face domain, reported in mIOU ("). Top half:
experiments performed on our splits with 8 classes. Bottom half: experiments performed on
[214] splits with 19 classes. Results for DDPM-Segment, MAE, and SwAV are those as
reported in Table 2 in [214].

# labeled

images

CelebAMask-HQ

8 classes

DDPM-Segment 16 0.772

DatasetDDPM 20 0.739

MAE 16 0.772

SwAV 16 0.725

HandsOff 16 0.781

# labeled

images

CelebAMask-HQ

19 classes

DDPM-Segment 20 0.599

MAE 20 0.578

SwAV 20 0.524

HandsOff 20 0.583

In Table C.2, we report the performance on our train/test splits with 8 classes and the

train/test splits found in [214] with 19 classes. With our splits and 8 segmentation classes,

HandsOff outperforms all baselines, including diffusion model-based approaches DDPM-

Segment and DatasetDDPM. This is likely due to two reasons: 1. DDPM-Segment does

not leverage the inherent ability of generative models to produce more samples whereas

HandsOff produces a large dataset on which the downstream segmenter is trained. The

volume of downstream training data compensates for the advantage that diffusion models

have over GANs. 2. Unlike DatasetDDPM, HandsOff trains on annotations of real images

and avoids hand annotating synthetic images, which as found by [214], when used in training,
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generally result in poorer performance. With the train/test splits found in [214] and 19

classes, DDPM-Segment performs slightly worse than DDPM-Segment, but outperforms

the strongest self-supervised baselines (MAE [215] and SwAV [216]), as reported in [214].

We utilize the implementation of [214] to train DDPM-Segment end-to-end on our train/test

splits. Furthermore, we utilize the publicly released synthetically generated datasets from

DatasetDDPM to train a downstream network and evaluate on our train/test splits, as the

labeled DDPM-generated images used to train DatasetDDPM were not publicly available.

C.3.3 Additional examples of generated labels

In this section, we present additional visual examples of generated images and their labels as

well as examples of segmentation mask improvements in the long-tail segmentation setting.

1. In Figure C.3, we present examples in the face domain. We include examples of the

predicted aggregated keypoint heatmaps used to generate the predicted keypoints.

To produce the aggregated heatmap, we sum across all of the individual keypoint

heatmaps.

2. In Figure C.4, we present examples in the car domain.

3. In Figure C.5, we present examples in the full-body human pose domain. We again

include examples of aggregated predicted heatmaps used to generate the predicted

keypoints. To produce the aggregated heatmap, we sum across all of the individual

keypoint heatmaps.

4. In Figure C.6, we present examples in the urban driving scene domain.

C.3.4 Additional examples of long-tail visualizations

In Figure C.7a and Figure C.7b, we present examples of long-tail segmentation mask

progressions and pixel-wise uncertainty measurements with glasses and hats, respectively.

Uncertainty is measured by Jensen-Shannon divergence (See Section 5.3.3).
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(a) Ablation for hypercolumn
dimension in the face domain.

(b) Ablation for ensemble size
in the face domain.

(c) Ablation for number of la-
beled training images in the car
domain.

(d) Ablation for the size of gen-
erated dataset in the car do-
main.

(e) Ablation for the percent of
generated dataset that is filtered
in the car domain.

Table C.3: Ablation for MLP hidden layer widths in the face domain

MLP layer widths (128, 32) (256, 32) (256, 64) (256, 128) (512, 32) (512, 64) (512, 128) (512, 256)
mIOU 0.7740 0.7859 0.7813 0.7807 0.7828 0.7818 0.7817 0.7850

Table C.4: Ablation for GAN inversion quality in the car domain.

Optimization loss 3.333 2.292 2.185 2.140 2.108 2.089
Optimization iterations 0 100 200 300 400 500
mIOU 0.5735 0.6278 0.6301 0.6679 0.6426 0.6591

Table C.5: Ablation for Cityscapes downstream network finetuning.

# labeled images No finetuning Finetuning
16 0.5206 0.5510
50 0.5492 0.6047

Table C.6: Ablation for choice of pretraining dataset for transfer learning baseline.

Domain # labeled images ImageNet pretrain COCO + ImageNet pretrain
Faces 16 0.4575 0.4896
Faces 50 0.6197 0.6295
Cars 16 0.3232 0.3313
Cars 50 0.4802 0.5026
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(a)

(b)

Figure C.2: (a) Alignment of reconstructed images with original segmentation masks in
the face domain. Semantic features align almost perfectly with segmentation masks. (b)
Visualization of fine detail improvement after optimization refinement in car domain. Areas
of vast improvement circled in red.
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Figure C.3: Examples of HandsOff generated labels (segmentation masks, keypoint
heatmaps, and keypoints) in the face domain. Last row of examples represent typical
failure cases. Hats, a rare class, are occasionally mis-classified as hair or clothing. Addi-
tionally, when the image includes GAN generated artifacts, segmentation mask quality is
typically lower, while keypoint locations remain accurate.
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Figure C.4: Examples of HandsOff generated segmentation masks in the car domain. Last
row of examples represent typical failure cases. Similar classes, such as back trunk and front
hood or front glass and back glass are confounded. Additionally, segmentation performance
is typically lower when GAN generated images are out of domain or incoherent.
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Figure C.5: Examples of HandsOff generated labels (segmentation masks, keypoint
heatmaps, and keypoints) in the full-body human poses domain. Last row of examples
represent typical failure cases. Similar classes, tops, outerwear, and dresses are confounded.
Furthermore, patterned pieces of clothing seem to result in mixed segmentation performance.
Keypoint locations remain accurate even when segmentation masks are of lower quality.
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Figure C.6: Examples of HandsOff generated labels (segmentation masks and depth maps)
in the urban driving scenes domain. Last row of examples represent typical failure cases.
Visually small objects such as light poles and street signs are often confounded as background
classes or not labeled. In cases of background buildings with many vertical lines, such lines
can be mistaken as street sign poles (last image in last row). Depth maps remain relatively
accurate even when segmentation masks are of lower quality.
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(a)

(b)

Figure C.7: Visualization of generated segmentation mask and pixel-wise label generator
uncertainty. (a) Not only do we see qualitative improvement in the generated label for
glasses, we also see that the classifier is less uncertain when generating the correct label.
(b) Hats are a particularly challenging class to characterize, so while the quality of the
masks improves drastically, the classifier uncertainty remains relatively high. The last row
of examples shows typical failure cases, where the hat is classified as semantically similar
classes, such as hair or clothing.

164



REFERENCES

[1] A. Xu and M. Davenport, “Simultaneous preference and metric learning from paired
comparisons,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[2] A. Xu, A. McRae, J. Wang, M. A. Davenport, and A. Pananjady, “Perceptual
adjustment queries and an inverted measurement paradigm for low-rank metric
learning,” in Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[3] A. Xu, W. Monroe, and K. Bicknell, “Large language model augmented exercise
retrieval for personalized language learning,” arXiv preprint arXiv:2402.16877,
2024.

[4] A. Xu, M. I. Vasileva, A. Dave, and A. Seshadri, “Handsoff: Labeled dataset gen-
eration with no additional human annotations,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp. 7991–8000.

[5] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press, 2019, vol. 48.

[6] R. Vershynin, High-dimensional probability: An introduction with applications in
data science. Cambridge university press, 2018, vol. 47.

[7] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[8] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[9] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, “Introduction to
compressed sensing,” in Compressed Sensing: Theory and Applications, Cambridge
University Press, 2012, pp. 1–64.

[10] S. Negahban and M. J. Wainwright, “Estimation of (near) low-rank matrices with
noise and high-dimensional scaling,” The Annals of Statistics, vol. 39, no. 2, pp. 1069–
1097, 2011.

[11] S. Negahban and M. J. Wainwright, “Restricted strong convexity and weighted
matrix completion: Optimal bounds with noise,” Journal of Machine Learning
Research, vol. 13, no. 1, pp. 1665–1697, 2012.

[12] H. A. David, The method of paired comparisons. London, 1963, vol. 12.

165



[13] N. B. Shah, S. Balakrishnan, J. Bradley, A. Parekh, K. Ramchandran, and M. J.
Wainwright, “Estimation from pairwise comparisons: Sharp minimax bounds with
topology dependence,” Journal of Machine Learning Research, vol. 17, no. 58,
pp. 1–47, 2016.

[14] J. Wang and N. B. Shah, “Your 2 is my 1, your 3 is my 9: Handling arbitrary
miscalibrations in ratings,” in Proceedings of the 18th International Conference on
Autonomous Agents and Multiagent Systems, 2019.

[15] D. Griffin and L. Brenner, “Perspectives on probability judgment calibration,” in
Blackwell Handbook of Judgment and Decision Making. Wiley-Blackwell, 2008,
ch. 9, ISBN: 9780470752937.

[16] P. Harik, B. Clauser, I. Grabovsky, R. Nungester, D. Swanson, and R. Nandakumar,
“An examination of rater drift within a generalizability theory framework,” Journal
of Educational Measurement, vol. 46, pp. 43–58, 2009.

[17] C. M. Myford and E. W. Wolfe, “Monitoring rater performance over time: A frame-
work for detecting differential accuracy and differential scale category use,” Journal
of Educational Measurement, vol. 46, no. 4, pp. 371–389, 2009.

[18] G. Miller, “The magical number seven, plus or minus two: Some limits on our
capacity for processing information.,” Psych. Rev., vol. 63, no. 2, p. 81, 1956.

[19] T. Joachims, “Optimizing search engines using clickthrough data,” in Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2002, pp. 133–142.

[20] C. C. Aggarwal et al., Recommender systems. Springer, 2016, vol. 1.

[21] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep
reinforcement learning from human preferences,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[22] L. Ouyang et al., “Training language models to follow instructions with human
feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–
27 744, 2022.

[23] Y. Bai et al., “Constitutional AI: Harmlessness from AI feedback,” arXiv preprint
arXiv:2212.08073, 2022.

[24] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, “Direct
preference optimization: Your language model is secretly a reward model,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

166



[25] B. Mason, L. Jain, and R. Nowak, “Learning low-dimensional metrics,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

[26] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in Proc. Int.
Work. on Similarity-Based Pattern Recognition (SIMBAD), Copenhagen, Denmark,
2015.

[27] N. Nadagouda, A. Xu, and M. A. Davenport, “Active metric learning and classifica-
tion using similarity queries,” in Uncertainty in Artificial Intelligence, PMLR, 2023,
pp. 1478–1488.

[28] G. Canal, S. Fenu, and C. Rozell, “Active ordinal querying for tuplewise similarity
learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
2020.

[29] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block designs: I. the
method of paired comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–345, 1952.

[30] S. Negahban, S. Oh, and D. Shah, “Rank centrality: Ranking from pair-wise com-
parisons,” Operations Research, vol. 65, 2012.

[31] S. Negahban, S. Oh, and D. Shah, “Iterative ranking from pair-wise comparisons,”
in Proc. Conf. Neural Inf. Proc. Sys. (NeurIPS), Lake Tahoe, California, 2012.

[32] A. Rajkumar and S. Agarwal, “A statistical convergence perspective of algorithms
for rank aggregation from pairwise data,” in International conference on machine
learning, PMLR, 2014, pp. 118–126.

[33] H. Bong and A. Rinaldo, “Generalized results for the existence and consistency of
the mle in the bradley-terry-luce model,” in International Conference on Machine
Learning, PMLR, 2022, pp. 2160–2177.

[34] S. Chen and T. Joachims, “Predicting matchups and preferences in context,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 775–784.

[35] R. Makhijani and J. Ugander, “Parametric models for intransitivity in pairwise
rankings,” in The World Wide Web Conference, 2019, pp. 3056–3062.

[36] A. Seshadri, A. Peysakhovich, and J. Ugander, “Discovering context effects from
raw choice data,” in International Conference on Machine Learning, PMLR, 2019,
pp. 5660–5669.

[37] A. Seshadri, S. Ragain, and J. Ugander, “Learning rich rankings,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9435–9446, 2020.

167



[38] A. Bower and L. Balzano, “Preference modeling with context-dependent salient
features,” in International Conference on Machine Learning, PMLR, 2020, pp. 1067–
1077.

[39] OpenAI, Gpt-4 technical report, 2023. arXiv: 2303.08774 [cs.CL].

[40] H. Touvron et al., “Llama: Open and efficient foundation language models,” arXiv
preprint arXiv:2302.13971, 2023.

[41] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv
preprint arXiv:2307.09288, 2023.

[42] A. Vaswani et al., “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[43] I. Goodfellow et al., “Generative adversarial nets,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 27, 2014.

[44] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-
works,” in International Conference on Machine :earning, PMLR, 2017, pp. 214–
223.

[45] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[46] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of GANs for
Improved Quality, Stability, and Variation,” in International Conference on Learning
Representations (ICLR), 2018.

[47] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Gen-
erative Adversarial Networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[48] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing
and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8110–
8119.

[49] T. Karras et al., “Alias-Free Generative Adversarial Networks,” Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[50] W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang, “Gan inversion: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

168

https://arxiv.org/abs/2303.08774


[51] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training for High
Fidelity Natural Image Synthesis,” in International Conference on Learning Repre-
sentations (ICLR), 2018.

[52] M. Kang et al., “Scaling up gans for text-to-image synthesis,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 10 124–10 134.

[53] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[54] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in International Conference
on Machine Learning, PMLR, 2015, pp. 2256–2265.

[55] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[56] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,”
in International Conference on Machine Learning, PMLR, 2021, pp. 8162–8171.

[57] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.

[58] C. H. Coombs, “Psychological scaling without a unit of measurement.,” Psychologi-
cal review, vol. 57, no. 3, p. 145, 1950.

[59] B. Dubois, “Ideal point versus attribute models of brand preference: A comparison
of predictive validity,” ACR North American Advances, 1975.
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[139] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych, “Beir: A het-
erogeneous benchmark for zero-shot evaluation of information retrieval models,”
in Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2021.

[140] K. Wang, N. Thakur, N. Reimers, and I. Gurevych, “Gpl: Generative pseudo labeling
for unsupervised domain adaptation of dense retrieval,” in Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2022, pp. 2345–2360.

[141] Y. Yu, C. Xiong, S. Sun, C. Zhang, and A. Overwijk, “Coco-dr: Combating the
distribution shift in zero-shot dense retrieval with contrastive and distributionally
robust learning,” in Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, 2022, pp. 1462–1479.

[142] G. Izacard et al., “Unsupervised Dense Information Retrieval with Contrastive
Learning,” Transactions on Machine Learning Research, 2022.

[143] L. Bonifacio, H. Abonizio, M. Fadaee, and R. Nogueira, “Inpars: Unsupervised
dataset generation for information retrieval,” in Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
2022, pp. 2387–2392.

[144] Z. Dai et al., “Promptagator: Few-shot dense retrieval from 8 examples,” in The
Eleventh International Conference on Learning Representations, 2022.

[145] D. Sachan et al., “Improving passage retrieval with zero-shot question generation,”
in Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, 2022, pp. 3781–3797.

[146] W. Yu et al., “Generate rather than retrieve: Large language models are strong context
generators,” in The Eleventh International Conference on Learning Representations,
2022.

176



[147] L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval without
relevance labels,” in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics, 2023, pp. 1762–1777.

[148] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of NAACL-
HLT, 2019, pp. 4171–4186.

[149] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” arXiv
preprint arXiv:1907.11692, 2019.

[150] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an in-
variant mapping,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, vol. 2, 2006, pp. 1735–1742.

[151] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for con-
trastive learning of visual representations,” in International Conference on Machine
Learning (ICML), PMLR, 2020, pp. 1597–1607.

[152] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple Contrastive Learning of Sentence
Embeddings,” in 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, 2021, pp. 6894–6910.

[153] Y.-S. Chuang et al., “Diffcse: Difference-based contrastive learning for sentence
embeddings,” in Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
2022, pp. 4207–4218.

[154] X. Wu, C. Gao, L. Zang, J. Han, Z. Wang, and S. Hu, “ESimCSE: Enhanced Sample
Building Method for Contrastive Learning of Unsupervised Sentence Embedding,”
in Proceedings of the 29th International Conference on Computational Linguistics,
2022, pp. 3898–3907.

[155] Q. Cheng, X. Yang, T. Sun, L. Li, and X. Qiu, “Improving contrastive learning of
sentence embeddings from ai feedback,” arXiv preprint arXiv:2305.01918, 2023.

[156] Y. Wang, A. Wu, and G. Neubig, “English contrastive learning can learn universal
cross-lingual sentence embeddings,” in Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, 2022, pp. 9122–9133.

[157] C. Piech et al., “Deep knowledge tracing,” Advances in Neural Information Process-
ing Systems, vol. 28, 2015.

[158] S. Pandey and G. Karypis, “A self-attentive model for knowledge tracing.,” Interna-
tional Educational Data Mining Society, 2019.

177



[159] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi, “Saint+: Integrating temporal
features for ednet correctness prediction,” in LAK21: 11th International Learning
Analytics and Knowledge Conference, 2021, pp. 490–496.

[160] G. Abdelrahman and Q. Wang, “Knowledge tracing with sequential key-value mem-
ory networks,” in Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, 2019.

[161] S. Tong et al., “Structure-based knowledge tracing: An influence propagation view,”
in 2020 IEEE International Conference on Data Mining (ICDM), IEEE, 2020,
pp. 541–550.

[162] L. Xu and M. A. Davenport, “Dynamic knowledge embedding and tracing.,” Inter-
national Educational Data Mining Society, 2020.

[163] S. Robertson, H. Zaragoza, et al., “The probabilistic relevance framework: Bm25
and beyond,” Foundations and Trends® in Information Retrieval, vol. 3, no. 4,
pp. 333–389, 2009.

[164] G. Wenzek et al., “Ccnet: Extracting high quality monolingual datasets from web
crawl data,” in Proceedings of the Twelfth Language Resources and Evaluation
Conference, 2020, pp. 4003–4012.

[165] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep Long-Tailed Learning: A
Survey,” arXiv preprint arXiv:2110.04596, 2021.

[166] Y. Zhang et al., “DatasetGAN: Efficient Labeled Data Factory with Minimal Human
Effort,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[167] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training Gen-
erative Adversarial Networks with Limited Data,” Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[168] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the Latent Space of GANs for
Semantic Face Editing,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[169] R. Abdal, Y. Qin, and P. Wonka, “Image2StyleGAN: How to Embed Images Into
the StyleGAN Latent Space?” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[170] R. Abdal, Y. Qin, and P. Wonka, “Image2StyleGAN++: How to Edit the Embedded
Images?” In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

178



[171] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “PULSE: Self-Supervised
Photo Upsampling via Latent Space Exploration of Generative Models,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[172] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler, “EditGAN: High-
Precision Semantic Image Editing,” in Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[173] Y. Alaluf, O. Patashnik, and D. Cohen-Or, “Restyle: A Residual-Based StyleGAN
Encoder via Iterative Refinement,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[174] Y. Alaluf, O. Tov, R. Mokady, R. Gal, and A. Bermano, “HyperStyle: StyleGAN
Inversion with HyperNetworks for Real Image Editing,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[175] D. Li, J. Yang, K. Kreis, A. Torralba, and S. Fidler, “Semantic Segmentation with
Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Gener-
alization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[176] D. Li, H. Ling, S. W. Kim, K. Kreis, S. Fidler, and A. Torralba, “BigDataset-
GAN: Synthesizing ImageNet with Pixel-wise Annotations,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[177] R. Abdal, P. Zhu, N. J. Mitra, and P. Wonka, “Labels4Free: Unsupervised segmenta-
tion using StyleGAN,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

[178] P. Esser, R. Rombach, and B. Ommer, “Taming Transformers for High-Resolution
Image Synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[179] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or, “Designing an Encoder
for StyleGAN Image Manipulation,” ACM Transactions on Graphics (TOG), 2021.

[180] E. Richardson et al., “Encoding in Style: a StyleGAN Encoder for Image-to-Image
Translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[181] T. Wang, Y. Zhang, Y. Fan, J. Wang, and Q. Chen, “High-Fidelity GAN Inversion for
Image Attribute Editing,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

179



[182] E. Collins, R. Bala, B. Price, and S. Susstrunk, “Editing in Style: Uncovering
the Local Semantics of GANs,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[183] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[184] D. Roich, R. Mokady, A. H. Bermano, and D. Cohen-Or, “Pivotal Tuning for
Latent-based Editing of Real Images,” ACM Transactions on Graphics (TOG), 2022.
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